Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781305717633
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 17, Problem 85E

(a)

Interpretation Introduction

Interpretation:

Various questions based on the displacement of one ion from its solution by other are to be answered and the E° , ΔG° and K for the possible reaction are to be calculated.

Concept introduction:

The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.

The value of Ecell is calculated using Nernst formula,

E=E°(RTnF)ln(Q)

At room temperature the above equation is specifies as,

E=E°(0.0591n)log(Q)

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

To determine: The reaction, if any, when crystals of I2 are added to solution of NaCl .

(a)

Expert Solution
Check Mark

Answer to Problem 85E

  1. a. On the addition of crystals of iodine to NaCl no reaction occurs.

Explanation of Solution

The reduction potential value for I2 is,

I2+2e2IE°=0.52V

The reduction potential value for Cl2 is,

Cl2+2e2ClE°=1.36V

As the value of reduction potential for iodine is lower than that of chlorine. So, it won’t be possible for iodine to replace ions from its solution.

(b)

Interpretation Introduction

Interpretation:

Various questions based on the displacement of one ion from its solution by other are to be answered and the E° , ΔG° and K for the possible reaction are to be calculated.

Concept introduction:

The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.

The value of Ecell is calculated using Nernst formula,

E=E°(RTnF)ln(Q)

At room temperature the above equation is specifies as,

E=E°(0.0591n)log(Q)

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

To determine: The reaction that takes place when Cl2 gas is bubbled into a solution of NaI .

(b)

Expert Solution
Check Mark

Answer to Problem 85E

  1. b. The value of E° is 0.82V_ , the value of ΔG° is -158.23kJ_ and the value of K is when Cl2 is bubbled into a solution of NaI 1096.47_ .

Explanation of Solution

Explanation

The reduction potential value for I2 is,

I2+2e2IE°=0.52V

The reduction potential value for Cl2 is,

Cl2+2e2ClE°=1.36V

As the reduction potential of chlorine is greater than iodine. Therefore, it is possible for chlorine to replace iodide ion from its solution and this leads to the liberation of iodine gas.

The reaction taking place at cathode is,

Cl2+2e2ClEred°=1.36V

The reaction taking place at anode is,

2II2+2eEox°=0.54V

Add both the oxidation and reduction half-reaction,

Cl2+2e2Cl2II2+2e

The final equation is,

Cl2+2I2Cl+I2

The value of E° is calculated as,

E°=Eox+Ered=0.54V+1.36V=0.82V_

The value of E° is calculated as 0.82V_ .

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

Where,

  • ΔG° is the Gibbs free energy change at the standard conditions.
  • n is the number of electrons involved in the reaction.
  • F is the Faraday’s constant.
  • E°cell is the cell potential at the standard condition.

The reaction involves the transfer of 2 moles of electrons.

Substitute the values in above equation,

ΔG°=(2mole)(96,485Cmole-)(0.82JC)=158,235.4J=-158.23kJ_

The value of ΔG° is calculated as -158.23kJ_

The relationship between Gibbs free energy change and equilibrium constant is given by the formula,

ΔG°=RTlnK=nFE°cell

Where,

  • ΔG° is the Gibbs free energy change at the standard conditions.
  • R is the universal gas constant.
  • T is the temperature in Kelvin.
  • K is the equilibrium constant.

Rearranged equation at 25°C is obtained as,

logK=((n)(E°)0.0591)

Substitute the obtained values in above equation,

logK=((2)(0.82)0.0591)=27.75K=1027.75=5.62×1027_

The value of K is 5.62×1027_ .

(c)

Answer:

c. There occurs no reaction when a silver wire is placed in a solution of CuCl2 .

Interpretation Introduction

Interpretation:

Various questions based on the displacement of one ion from its solution by other are to be answered and the E° , ΔG° and K for the possible reaction are to be calculated.

Concept introduction:

The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.

The value of Ecell is calculated using Nernst formula,

E=E°(RTnF)ln(Q)

At room temperature the above equation is specifies as,

E=E°(0.0591n)log(Q)

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

To determine: The reaction, if any, when a silver wire is placed into a solution of CuCl2

(c)

Answer:

c. There occurs no reaction when a silver wire is placed in a solution of CuCl2 .

Expert Solution
Check Mark

Answer to Problem 85E

c. There occurs no reaction when a silver wire is placed in a solution of CuCl2 .

Explanation of Solution

The reduction potential value for Ag+ is,

Ag++eAgE°=0.80V

Write it in reverse order,

AgAg++eE°ox=0.80V

The reduction potential value for Cu2+ is,

Cu2++2eCuE°red=0.34V

The value of E° is calculated as,

E°=E°ox+E°red=0.80V+0.34V=-0.64V_

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

Where,

  • ΔG° is the Gibbs free energy change at the standard conditions.
  • n is the number of electrons involved in the reaction.
  • F is the Faraday’s constant.
  • E°cell is the cell potential at the standard condition.

As the value of E°cell is negative, therefore the value of ΔG° is positive. It means it corresponds to a non-spontaneous reaction.

(d)

Interpretation Introduction

Interpretation:

Various questions based on the displacement of one ion from its solution by other are to be answered and the E° , ΔG° and K for the possible reaction are to be calculated.

Concept introduction:

The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.

The value of Ecell is calculated using Nernst formula,

E=E°(RTnF)ln(Q)

At room temperature the above equation is specifies as,

E=E°(0.0591n)log(Q)

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

To determine: The reaction, if any, an acidic solution of FeSO4 is exposed to air.

(d)

Expert Solution
Check Mark

Answer to Problem 85E

d. The value of E° is 0.46V_ , the value of ΔG° is -177.53kJ_ and the value of K is 1.34×1031_ when an acidic solution of FeSO4 is exposed to air.

Explanation of Solution

The reduction potential value for O2 is,

O2+4H++4e2H2OE°=1.23V

The reduction potential value for Fe3+ is,

Fe3++eFe2+E°=0.77V

The reaction taking place at cathode is,

O2+4H++4e2H2OE°red=1.23V

The reaction taking place at anode is,

Fe2+Fe3++eE°ox=0.77V

Multiply the oxidation half-reaction with a coefficient of 4 and then add both the oxidation and reduction half-reaction,

O2+4H++4e2H2O4Fe2+4Fe3++4e

The final equation is,

4Fe2++O2+4H+4Fe3++2H2O

The value of E° is calculated as,

E°=Eox+Ered=0.77V+1.23V=0.46V_

The value of E° is calculated as 0.46V_ .

The relationship between cell potential and Gibbs free energy change is given by the formula,

ΔG°=nFE°cell

Where,

  • ΔG° is the Gibbs free energy change at the standard conditions.
  • n is the number of electrons involved in the reaction.
  • F is the Faraday’s constant.
  • E°cell is the cell potential at the standard condition.

The reaction involves the transfer of 4 moles of electrons.

Substitute the values in above equation,

ΔG°=(4mole)(96,485Cmole-)(0.46JC)=17,7532.4J=-177.53kJ_

The value of ΔG° is calculated as -177.53kJ_

The relationship between Gibbs free energy change and equilibrium constant is given by the formula,

ΔG°=RTlnK=nFE°cell

Where,

  • ΔG° is the Gibbs free energy change at the standard conditions.
  • R is the universal gas constant.
  • T is the temperature in Kelvin.
  • K is the equilibrium constant.

Rearranged equation at 25°C is obtained as,

logK=((n)(E°)0.0591)

Substitute the obtained values in above equation,

logK=((4)(0.46)0.0591)=31.13K=1031.13=1.34×1031_

The value of K is calculated as 1.34×1031_ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Google
Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfox
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①

Chapter 17 Solutions

Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card

Ch. 17 - Prob. 2ALQCh. 17 - Prob. 3ALQCh. 17 - Prob. 4ALQCh. 17 - Sketch a cell that forms iron metal from iron(II)...Ch. 17 - Which of the following is the best reducing agent:...Ch. 17 - Prob. 7ALQCh. 17 - Prob. 8ALQCh. 17 - Explain why cell potentials are not multiplied by...Ch. 17 - What is the difference between and ? When is equal...Ch. 17 - Prob. 11ALQCh. 17 - Look up the reduction potential for Fe3+ to Fe2+....Ch. 17 - Prob. 13ALQCh. 17 - Is the following statement true or false?...Ch. 17 - Prob. 15RORRCh. 17 - Assign oxidation numbers to all the atoms in each...Ch. 17 - Specify which of the following equations represent...Ch. 17 - The Ostwald process for the commercial production...Ch. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - When magnesium metal is added to a beaker of...Ch. 17 - How can one construct a galvanic cell from two...Ch. 17 - The free energy change for a reaction, G, is an...Ch. 17 - What is wrong with the following statement: The...Ch. 17 - When jump-starting a car with a dead battery, the...Ch. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Consider the following electrochemical cell: a. If...Ch. 17 - Balance the following oxidationreduction reactions...Ch. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Chlorine gas was first prepared in 1774 by C. W....Ch. 17 - Gold metal will not dissolve in either...Ch. 17 - Prob. 35ECh. 17 - Consider the following galvanic cell: a. Label the...Ch. 17 - Prob. 37ECh. 17 - Sketch the galvanic cells based on the following...Ch. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - Prob. 41ECh. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Give the standard line notation for each cell in...Ch. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Prob. 47ECh. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - The amount of manganese in steel is determined by...Ch. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Estimate for the half-reaction 2H2O+2eH2+2OH given...Ch. 17 - Prob. 54ECh. 17 - Glucose is the major fuel for most living cells....Ch. 17 - Direct methanol fuel cells (DMFCs) have shown some...Ch. 17 - Prob. 57ECh. 17 - Using data from Table 17-1, place the following in...Ch. 17 - Answer the following questions using data from...Ch. 17 - Prob. 60ECh. 17 - Consider only the species (at standard conditions)...Ch. 17 - Prob. 62ECh. 17 - Prob. 63ECh. 17 - Prob. 64ECh. 17 - Prob. 65ECh. 17 - Prob. 66ECh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 68ECh. 17 - Consider the concentration cell shown below....Ch. 17 - Prob. 70ECh. 17 - The overall reaction in the lead storage battery...Ch. 17 - Prob. 72ECh. 17 - Consider the cell described below:...Ch. 17 - Consider the cell described below:...Ch. 17 - Prob. 75ECh. 17 - Prob. 76ECh. 17 - Prob. 77ECh. 17 - Prob. 78ECh. 17 - Prob. 79ECh. 17 - An electrochemical cell consists of a nickel metal...Ch. 17 - An electrochemical cell consists of a standard...Ch. 17 - Prob. 82ECh. 17 - Consider a concentration cell that has both...Ch. 17 - Prob. 84ECh. 17 - Prob. 85ECh. 17 - Prob. 86ECh. 17 - Consider the following galvanic cell at 25C:...Ch. 17 - Prob. 88ECh. 17 - Prob. 89ECh. 17 - Prob. 90ECh. 17 - Prob. 91ECh. 17 - The solubility product for CuI(s) is 1.1 102...Ch. 17 - How long will it take to plate out each of the...Ch. 17 - The electrolysis of BiO+ produces pure bismuth....Ch. 17 - What mass of each of the following substances can...Ch. 17 - Prob. 96ECh. 17 - An unknown metal M is electrolyzed. It took 74.1 s...Ch. 17 - Electrolysis of an alkaline earth metal chloride...Ch. 17 - What volume of F2 gas, at 25C and 1.00 atm, is...Ch. 17 - What volumes of H2(g) and O2(g) at STP are...Ch. 17 - Prob. 101ECh. 17 - A factory wants to produce 1.00 103 kg barium...Ch. 17 - It took 2.30 min using a current of 2.00 A to...Ch. 17 - A solution containing Pt4+ is electrolyzed with a...Ch. 17 - A solution at 25C contains 1.0 M Cd2+, 1.0 M Ag+,...Ch. 17 - Consider the following half-reactions: A...Ch. 17 - In the electrolysis of an aqueous solution of...Ch. 17 - Copper can be plated onto a spoon by placing the...Ch. 17 - Prob. 109ECh. 17 - Prob. 110ECh. 17 - Prob. 111ECh. 17 - What reaction will take place at the Cathode and...Ch. 17 - Gold is produced electrochemically from an aqueous...Ch. 17 - Prob. 114AECh. 17 - The saturated calomel electrode. abbreviated SCE....Ch. 17 - Consider the following half-reactions: Explain why...Ch. 17 - Consider the standard galvanic cell based on the...Ch. 17 - Prob. 118AECh. 17 - The black silver sulfide discoloration of...Ch. 17 - Prob. 120AECh. 17 - When aluminum foil is placed in hydrochloric acid,...Ch. 17 - Prob. 122AECh. 17 - Prob. 123AECh. 17 - The overall reaction and equilibrium constant...Ch. 17 - What is the maximum work that can be obtained from...Ch. 17 - The overall reaction and standard cell potential...Ch. 17 - Prob. 127AECh. 17 - Prob. 128AECh. 17 - Prob. 129AECh. 17 - Prob. 130AECh. 17 - Prob. 131AECh. 17 - Prob. 132AECh. 17 - Prob. 133AECh. 17 - Prob. 134CWPCh. 17 - Consider a galvanic cell based on the following...Ch. 17 - Consider a galvanic cell based on the following...Ch. 17 - Consider a galvanic cell based on the following...Ch. 17 - An electrochemical cell consists of a silver metal...Ch. 17 - An aqueous solution of PdCl2 is electrolyzed for...Ch. 17 - Prob. 140CPCh. 17 - Prob. 141CPCh. 17 - The overall reaction in the lead storage battery...Ch. 17 - Consider the following galvanic cell: Calculate...Ch. 17 - Prob. 144CPCh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 146CPCh. 17 - The measurement of pH using a glass electrode...Ch. 17 - Prob. 148CPCh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 150CPCh. 17 - Prob. 151CPCh. 17 - Prob. 152CPCh. 17 - Consider the following galvanic cell: A 15 0-mole...Ch. 17 - When copper reacts with nitric acid, a mixture of...Ch. 17 - The following standard reduction potentials have...Ch. 17 - An electrochemical cell is set up using the...Ch. 17 - Three electrochemical cells were connected in...Ch. 17 - A silver concentration cell is set up at 25C as...Ch. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 160MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY