A concentration cell with silver electrode as cathode and anode with different concentrations of different ions is given. Various questions based on the given concentrations and cell potential are to be answered. Concept introduction: The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation. The value of E cell is calculated using Nernst formula, E = E ° − ( R T n F ) ln ( Q ) At room temperature the above equation is specifies as, E = E ° − ( 0.0591 n ) log ( Q ) This relation is further used to determine the relation between Δ G ° and K , Δ G ° and E ° cell . The value of equilibrium constant helps to predict the extent of the reaction. To determine: The concentration of Ag + at the anode.
A concentration cell with silver electrode as cathode and anode with different concentrations of different ions is given. Various questions based on the given concentrations and cell potential are to be answered. Concept introduction: The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation. The value of E cell is calculated using Nernst formula, E = E ° − ( R T n F ) ln ( Q ) At room temperature the above equation is specifies as, E = E ° − ( 0.0591 n ) log ( Q ) This relation is further used to determine the relation between Δ G ° and K , Δ G ° and E ° cell . The value of equilibrium constant helps to predict the extent of the reaction. To determine: The concentration of Ag + at the anode.
Solution Summary: The author explains how the Nernst equation calculates the cell potential and the standard reduction potential value. The equilibrium constant helps to predict the extent of the reaction.
Definition Definition Study of chemical reactions that result in the production of electrical energy. Electrochemistry focuses particularly on how chemical energy is converted into electrical energy and vice-versa. This energy is used in various kinds of cells, batteries, and appliances. Most electrochemical reactions involve oxidation and reduction.
Chapter 17, Problem 84E
(a)
Interpretation Introduction
Interpretation:
A concentration cell with silver electrode as cathode and anode with different concentrations of different ions is given. Various questions based on the given concentrations and cell potential are to be answered.
Concept introduction:
The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.
The value of
Ecell is calculated using Nernst formula,
E=E°−(RTnF)ln(Q)
At room temperature the above equation is specifies as,
E=E°−(0.0591n)log(Q)
This relation is further used to determine the relation between
ΔG° and
K ,
ΔG° and
E°cell. The value of equilibrium constant helps to predict the extent of the reaction.
To determine: The concentration of
Ag+ at the anode.
(b)
Interpretation Introduction
Interpretation:
A concentration cell with silver electrode as cathode and anode with different concentrations of different ions is given. Various questions based on the given concentrations and cell potential are to be answered.
Concept introduction:
The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.
The value of
Ecell is calculated using Nernst formula,
E=E°−(RTnF)ln(Q)
At room temperature the above equation is specifies as,
E=E°−(0.0591n)log(Q)
This relation is further used to determine the relation between
ΔG° and
K ,
ΔG° and
E°cell. The value of equilibrium constant helps to predict the extent of the reaction.
To determine: The value of equilibrium constant for the formation of
Ag(S2O3)23−.
Draw the Fischer projection of D-fructose.
Click and drag to start drawing a
structure.
Skip Part
Check
AP
14
tv
SC
F1
F2
80
F3
a
F4
!
2
#
3
CF
F5
75
Ax
MacBook Air
894
$
5olo
%
Λ
6 >
W
F6
K
F7
&
Consider this step in a radical reaction:
Y
What type of step is this? Check all that apply.
Draw the products of the step on the right-hand side of the drawing area
below. If more than one set of products is possible, draw any set.
Also, draw the mechanism arrows on the left-hand side of the drawing
area to show how this happens.
ionization
propagation
initialization
passivation
none of the above
22.16 The following groups are ortho-para directors.
(a)
-C=CH₂
H
(d)
-Br
(b)
-NH2
(c)
-OCHS
Draw a contributing structure for the resonance-stabilized cation formed during elec-
trophilic aromatic substitution that shows the role of each group in stabilizing the
intermediate by further delocalizing its positive charge.
22.17 Predict the major product or products from treatment of each compound with
Cl₁/FeCl₂-
OH
(b)
NO2
CHO
22.18 How do you account for the fact that phenyl acetate is less reactive toward electro-
philic aromatic substitution than anisole?
Phenyl acetate
Anisole
CH
(d)
Chapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell