Organic Chemistry-Package(Custom)
4th Edition
ISBN: 9781259141089
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 15.58P
An alternative mechanism for the propagation steps in the radical chlorination of CH4 is drawn below. Calculate ∆Ho for these steps and explain why this pathway is unlikely.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When a small amount of iodine is added to a mixture of chlorine and methane, it prevents chlorination from occurring. Therefore, iodine is a free-radical inhibitor for this reaction. Calculate ∆H° values for the possible reactions of iodine with species present in the chlorination of methane, and use these values to explain why iodine inhibits the reaction. (The I¬Cl bond-dissociation enthalpy is 211 kJ>mol or 50 kcal>mol.)
Some reactions proceed through a chain mechanism involving radicals, which are highly reactive species with one or more unpaired electrons. The radicals are produced in initiation steps, through either thermal or photodissociation. Reactions in which the radical centre is transferred are called propagation steps. The radicals are lost in termination steps. Consider the following chain mechanism:(1) AH → A + H·(2) A → B· + C(3) AH + B· → A + D(4) A + B· → P(a) Identify the initiation, propagation, and termination steps.(b) Use the steady-state approximation to deduce that the decompositionof AH is f irst-order in AH.
Explain why the combustion of a fuel such as methane is aseries of free radical reactions.
Chapter 15 Solutions
Organic Chemistry-Package(Custom)
Ch. 15 - Prob. 15.1PCh. 15 - Prob. 15.2PCh. 15 - Draw the product formed when a chlorine atom (Cl)...Ch. 15 - Prob. 15.4PCh. 15 - Prob. 15.5PCh. 15 - Problem 15.6 Using mechanism 15.1 as guide, write...Ch. 15 - Calculate m0 for the two propagation steps in the...Ch. 15 - Prob. 15.8PCh. 15 - Problem 15.8 Which bond in the each compound is...Ch. 15 - Prob. 15.10P
Ch. 15 - Prob. 15.11PCh. 15 - Synthesize each compound from (CH3)3CH. a....Ch. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Prob. 15.17PCh. 15 - Prob. 15.18PCh. 15 - Draw all constitutional isomers formed when each...Ch. 15 - Draw the structure of the four allylic halides...Ch. 15 - Which compounds can be prepared in good yield by...Ch. 15 - Which CH bond is most readily cleaved in linolenic...Ch. 15 - Prob. 15.23PCh. 15 - Draw the products formed when each alkene is...Ch. 15 - Problem 15.24 When adds to under radical...Ch. 15 - Prob. 15.26PCh. 15 - Draw an energy diagram for the two propagation...Ch. 15 - Prob. 15.28PCh. 15 - Problem 15.27 Draw the steps of the mechanism that...Ch. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - Prob. 15.32PCh. 15 - Prob. 15.33PCh. 15 - Why is a benzylic CH bond labeled in red unusually...Ch. 15 - Prob. 15.35PCh. 15 - Prob. 15.36PCh. 15 - Prob. 15.37PCh. 15 - Prob. 15.38PCh. 15 - What alkane is needed to make each alkyl halide by...Ch. 15 - Which alkyl halides can be prepared in good yield...Ch. 15 - Prob. 15.41PCh. 15 - 15.40 Explain why radical bromination of p-xylene...Ch. 15 - a. What product(s) (excluding stereoisomers) are...Ch. 15 - Prob. 15.44PCh. 15 - Prob. 15.45PCh. 15 - Prob. 15.46PCh. 15 - 15.44 Draw all constitutional isomers formed when...Ch. 15 - Draw the organic products formed in each reaction....Ch. 15 - Prob. 15.49PCh. 15 - 15.47 Treatment of a hydrocarbon A (molecular...Ch. 15 - Prob. 15.51PCh. 15 - Prob. 15.52PCh. 15 - Prob. 15.53PCh. 15 - Prob. 15.54PCh. 15 - 15.53 Consider the following bromination: .
a....Ch. 15 - 15.54 Draw a stepwise mechanism for the following...Ch. 15 - Prob. 15.57PCh. 15 - An alternative mechanism for the propagation steps...Ch. 15 - Prob. 15.59PCh. 15 - Prob. 15.60PCh. 15 - Devise a synthesis of each compound from...Ch. 15 - Devise a synthesis of each target compound from...Ch. 15 - Devisea synthesis of each target compound from the...Ch. 15 - Devise a synthesis of each compound using CH3CH3...Ch. 15 - Prob. 15.65PCh. 15 - 15.63 As described in Section 9.16, the...Ch. 15 - 15.64 Ethers are oxidized with to form...Ch. 15 - Prob. 15.68PCh. 15 - Prob. 15.69PCh. 15 - 15.67 In cells, vitamin C exists largely as its...Ch. 15 - What monomer is needed to form each...Ch. 15 - Prob. 15.72PCh. 15 - Prob. 15.73PCh. 15 - 15.71 Draw a stepwise mechanism for the following...Ch. 15 - 15.72 As we will learn in Chapter 30, styrene...Ch. 15 - Prob. 15.76PCh. 15 - 15.74 A and B, isomers of molecular formula , are...Ch. 15 - Prob. 15.78PCh. 15 - Radical chlorination of CH3CH3 forms two minor...Ch. 15 - 15.76 Draw a stepwise mechanism for the...Ch. 15 - Prob. 15.81PCh. 15 - Prob. 15.82PCh. 15 - Prob. 15.83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Although CH4 reacts with Cl2 to form CH3Cl and HCl, the corresponding reaction of CH4 with I2 does not occur at an appreciable rate, even though the I–I bond is much weaker than the Cl–Cl bond. Explain why this is so.arrow_forwardThe data below show the concentration of N2O5 versus time for the following reaction: N2O5 (g) → NO3 (g) + NO2(g) Time (s) [N2O5] (M) 1.000 25 0.822 50 0.677 75 0.557 100 0.458 125 0.377 150 0.310 175 0.255 200 0.210arrow_forwardIdentify the type of chemical reactionarrow_forward
- 4arrow_forwardWhich reactions have a positive ASrxn? 2 A(g) + 3 B(g) –→ 4 C(g) 2 A(g) + 2 B(g) –→ 3 C(g) 2 A(g) + B(g) –→ 4 C(g) A(s) + B(s) · → C(g)arrow_forwardUse the following equations (picture) to determine the deltaH ° for the target reaction. Target: N2H2(l)+2H2O2(l)——> N2(g)+4H2O(l)arrow_forward
- The chlorination of propane proceeds as a radical chain reaction. hv 2 CH,CH,CH, + 2Cl, CH, CH,CH,Cl + CH,CHCICH, + 2 HCl Sort the 7 reaction steps (you may need to scroll down to see them all) into categories of initation, propagation and termination.arrow_forwardDeduce possible reactions steps (no photolysis) for Mechanism II following X + 03 → XO + O₂ step such that the sum of all mechanism steps does not destroy or create any ozone.arrow_forwardThe rate law for the reaction NO₂ (g)+CO(g) → NO(g)+CO₂ (g) is rate k[NO₂]² ; one possible mechanism is shown on p. 717.(a) Draw a reaction energy diagram for that mechanism, giventhat ΔH°overall =-226 kJ/mol.(b) Consider the following alternative mechanism:Is the alternative mechanism consistent with the rate law? Isone mechanism more reasonable physically?arrow_forward
- Give the initiation step (equation) to form fluorine radical from X2 → 2X• UV UV **arrow_forwardwrite the mechanism for the following reactions Br Br₂ CH2Cl2 MCBPA Å -Brarrow_forwardCalculate the ▲H° for each chain propagation step and show that they add up to the observed ▲H° for the overall reaction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY