Concept explainers
Green’s Second Identity Prose Green’s Second Identity for scalar-valued functions u and v defined on a region D:
(Hint: Reverse the roles of u and v in Green’s First Identity.)
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Precalculus Enhanced with Graphing Utilities (7th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- Green's Second Identity Prove Green's Second Identity for scalar-valued functions u and v defined on a region D: (uv²v – vv²u) dV = || (uvv – vVu) •n dS. (Hint: Reverse the roles of u and v in Green's First Identity.)arrow_forwardmaths 1819arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x + 2y + z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forward
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + e-z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x2 + y2 + z2;;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100e-x2 - y2 - z2; D is the sphere of radius a centered at the origin.arrow_forward
- please could you explain how to work this out and how you would vary Uarrow_forwardApplication of Green's theorem Assume that u and u are continuously differentiable functions. Using Green's theorem, prove that JS D Ur Vy dA= u dv, where D is some domain enclosed by a simple closed curve C with positive orientation.arrow_forwardpls answer together with the sub questionsarrow_forward
- Application of Green's theorem Assume that u and v are continuously differentiable functions. Using Green's theorem, prove that SS'S D Ux Vx |u₁|dA= udv, C Wy Vy where D is some domain enclosed by a simple closed curve C with positive orientation.arrow_forward(5) Let ß be the vector-valued function 3u ß: (-2,2) × (0, 2π) → R³, B(U₁₂ v) = { 3u² 4 B (0,7), 0₁B (0,7), 0₂B (0,7) u cos(v) VI+ u², sin(v), (a) Sketch the image of ß (i.e. plot all values ß(u, v), for (u, v) in the domain of ß). (b) On the sketch in part (a), indicate (i) the path obtained by holding v = π/2 and varying u, and (ii) the path obtained by holding u = O and varying v. (c) Compute the following quantities: (d) Draw the following tangent vectors on your sketch in part (a): X₁ = 0₁B (0₂7) B(0)¹ X₂ = 0₂ß (0,7) p(0.4)* ' cos(v) √1+u² +arrow_forward1. Consider the function F(x, y, z) = (√/1 – x² − y², ln(e² — z²)). This function is a mapping from R" to Rm. Determine the values of m and n. (b) Is this function scalar-valued or vector-valued? Briefly explain. (c) Determine the domain and range of F and sketch the corresponding regions. (d) Is it possible to visualize this function as a graph? If so, sketch the graph of F.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning