Concept explainers
Verifying Stokes’ Theorem Verify that the line
5. F = 〈y, – x, 10〉; S is the upper half of the sphere x2 + y2 + z2 = 1 and C is the circle x2 + y2 = 1 in the xy-plane.
Learn your wayIncludes step-by-step video
Chapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Introductory Statistics
University Calculus: Early Transcendentals (4th Edition)
- Let (P) be a plane considered as a surface in the space, parameterized by X(u, v) = (u, v, au + bv + c) where a, b, and c are all constants, with c + 0. Then: The tangent plane at each point is perpendicular to (P) The normal vector varies constantly The above answer The above a nswer The second fundamental form equals e The second fundamental form is zero The above answer The above a ns werarrow_forwardIdentify the surface by eliminating the parameters from the vector-valued function r(u,v) = 3 cosv cosui + 3 cosv sinuj + Śsinvk a. plane b. sphere c. paraboloid d. cylinder e. ellipsoid d b a e (Darrow_forwardplease help mearrow_forward
- REFER TO IMAGEarrow_forwardc) Verify Stokes's Theorem for F = (x²+y²)i-2xyj takes around the rectangle bounded by the lines x=2, x=-2, y=0 and y=4arrow_forwardLet S be the portion of the plane 2x + 3y + z = 2 lying between the points (−1, 1, 1), (2, 1, −5), (2, 3, −11), and (-1, 3, -5). Find parameterizations for both the surface S and its boundary S. Be sure that their respective orientations are compatible with Stokes' theorem. from (-1, 1, 1) to (2, 1,-5) from (2, 1, 5) to (2, 3, -11) from (2, 3, -11) to (-1, 3, -5) from (-1, 3, 5) to (-1, 1, 1) boundary S₁ (t) = S₂(t) = S3(t) = S4(t) = Φ(u, v) = te [0, 1) te [1, 2) te [2, 3) te [3, 4) UE [-1, 2], VE [1, 3]arrow_forward
- Consider the surface given by the parametric vector function (image) 1. The graph of r (u, v) is the same graph of the surface z2 = x2 − y2 2. The surface is smooth in all its points. which is correct, incorrect or botharrow_forwardPlease show all work!arrow_forward4. Consider the vector function r(z, y) (r, y, r2 +2y"). (a) Re-write this vector function as surface function in the form f(1,y). (b) Describe and draw the shape of the surface function using contour lines and algebraic analysis as needed. Explain the contour shapes in all three orthogonal directions and explain and label all intercepts as needed. (c) Consider the contour of the surface function on the plane z= for this contour in vector form. 0. Write the general equationarrow_forward
- Use Stokes' Theorem to evaluate of intersection of the plane x + 3y +z = 12 with the coordinate planes. (Assume that C is oriented counterclockwise as viewed from above.) F. dr where F = (x + 6z)i + (8x + y)j + (10y −z) k_and C is the curvearrow_forward3. Detemine vector and parametric equations for the plane through the point (1, -2, 3) and parallel to the xy-plane. Show your work. Textarrow_forwardUse stokes theorem to evaluate the integralarrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage