Stokes’ Theorem for evaluating line integrals Evaluate the line integral ∮ C F ⋅ d r by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation. 15. F = 〈 y 2 , – z 2 , x 〉; C is the circle r ( t ) = 〈3 cos t, 4 cos t , 5 sin t 〉, for 0 ≤ t ≤ 2 p .
Stokes’ Theorem for evaluating line integrals Evaluate the line integral ∮ C F ⋅ d r by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation. 15. F = 〈 y 2 , – z 2 , x 〉; C is the circle r ( t ) = 〈3 cos t, 4 cos t , 5 sin t 〉, for 0 ≤ t ≤ 2 p .
Stokes’ Theorem for evaluating line integralsEvaluate the line integral
∮
C
F
⋅
d
r
by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation.
15. F = 〈y2, –z2, x〉; C is the circle r(t) = 〈3 cos t, 4 cos t, 5 sin t〉, for 0 ≤ t ≤ 2p.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
For the following function f and real number a,
a. find the slope of the tangent line mtan
=
f' (a), and
b. find the equation of the tangent line to f at x = a.
f(x)=
2
=
a = 2
x2
a. Slope:
b. Equation of tangent line: y
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY