Concept explainers
Stokes’ Theorem for evaluating line
15. F = 〈y2, –z2, x〉; C is the circle r(t) = 〈3 cos t, 4 cos t, 5 sin t〉, for 0 ≤ t ≤ 2p.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Thomas' Calculus: Early Transcendentals (14th Edition)
Precalculus (10th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- Please show work. This is my calculus 3 hw. Part A onlyarrow_forwardUse stokes theorem to evaluate the integralarrow_forwardUse Green's Theorem to evaluate the line integral. Assume the curve is oriented counterclockwise. 8x + cos s-dy- (9y2 + arctan x?) dx, where C is the boundary of the square with vertices (3, 3), (5, 3), (5, 5), and (3, 5). $ 8x + cos - dy - (9y² + arctan x²) dx = D (Type an exact answer.)arrow_forward
- Use Green's Theorem to evaluate the line integral. Assume the curve is oriented counterclockwise. $(5) (5x+ sinh y)dy - (3y² + arctan x²) dx, where C is the boundary of the square with vertices (1, 3), (2, 3), (2, 4), and (1,4). false (Type an exact answer.) (5x + sinh yldy – (3y® + arctan x an x²) dx = dx = ...arrow_forwardUse Stokes' Theorem to evaluate Use Stokes' Theorem to evaluate ∫C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = yzi + 3xzj + exyk, C is the circle x2 + y2 = 4, z = 6.arrow_forwardScalar line integrals Evaluate the following line integral along the curve C.arrow_forward
- (c) Verify the line integral and surface integral by relating them to the Stokes' Theorem where C is the circle x² + y² 1 on xy-plane with a counterclockwise orientation looking down the positive z-axis. = √ x²ydx + xdyarrow_forwardonly HANDWRITTEN answer needed ( NOT TYPED)arrow_forwardEvaluate the line integral PF • dr by evaluating the surface с integral in Stokes' Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation when viewed from above. F = (-3y, -z,x) C is the circle x² + y² = 26 in the plane z = 0.arrow_forward
- Use Green's Theorem to find the following line integralarrow_forwardPlease show work. This is my calculus 3 hw. Part Barrow_forward5. Use Stokes' Theorem (and only Stokes' Theorem) to evaluate F dr, where F(r, y, z) be clear, if you want to evaluate this and use Stokes' Theorem then you must be calculating the surface integral of the curl of F of a certain surface S.) (3y,-2x, 3y) and C is the curve given by a +y? = 9, z = 2. (So to %3Darrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning