Concept explainers
Area of a region in a plane Let R be a region in a plane that has a unit normal
a. Show that ▿ × F = n
b. Use Stokes’ Theorem to show that
c. Consider the curve C given by r = 〈5 sin t, 13 cos t, 12 sin t〉, for 0 ≤ t ≤ 2p. Prove that C lies in a plane by showing that
d. Use part (b) to find the area of the region enclosed by C in part (c). (Hint: Find the unit normal vector that is consistent with the orientation of C.)
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Precalculus Enhanced with Graphing Utilities (7th Edition)
Thomas' Calculus: Early Transcendentals (14th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- REFER TO IMAGEarrow_forwardc) Verify Stokes's Theorem for F = (x²+y²)i-2xyj takes around the rectangle bounded by the lines x=2, x=-2, y=0 and y=4arrow_forwardSketch the cardioid r = 3 cos e and find the coordinates of the points on the cardioid where the tangent line is: (a) horizontal (b) vertical encarrow_forward
- The regon, D, is the region enclosed by the parametric curve: r(t) = vector brackets (cos(t), sin(t) - cos(t)) O <=t<= 2pi Some people call the region D, "the Dude" or "His Dudness". Find the area of, D, by using Green's Theorem. А.) 0 В.) pi C.) -pi D.) 2pi E.) none of thesearrow_forwardfind a unit normal vector to the surface at the indicated pointarrow_forwardCurve C is any curvearrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning