Green’s Theorem as a Fundamental Theorem of Calculus Show that if the circulation form of Green’s Theorem is applied to the vector field 〈 0 , f ( x ) c 〉 and R = { ( x , y ) : a ≤ x ≤ b , 0 ≤ y ≤ c } , then the result is the Fundamental Theorem of Calculus, ∫ a b d f d x d x = f ( b ) − f ( a ) .
Green’s Theorem as a Fundamental Theorem of Calculus Show that if the circulation form of Green’s Theorem is applied to the vector field 〈 0 , f ( x ) c 〉 and R = { ( x , y ) : a ≤ x ≤ b , 0 ≤ y ≤ c } , then the result is the Fundamental Theorem of Calculus, ∫ a b d f d x d x = f ( b ) − f ( a ) .
Solution Summary: The author explains that if the circulation form of Green's theorem is applied to the vector field langle 0,f(x)crangle and R=left
Green’s Theorem as a Fundamental Theorem of Calculus
Show that if the circulation form of Green’s Theorem is applied to the vector field
〈
0
,
f
(
x
)
c
〉
and
R
=
{
(
x
,
y
)
:
a
≤
x
≤
b
,
0
≤
y
≤
c
}
, then the result is the Fundamental Theorem of Calculus,
∫
a
b
d
f
d
x
d
x
=
f
(
b
)
−
f
(
a
)
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Properties of div and curl Prove the following properties of thedivergence and curl. Assume F and G are differentiable vectorfields and c is a real number.a. ∇ ⋅ (F + G) = ∇ ⋅ F + ∇ ⋅ Gb. ∇ x (F + G) = (∇ x F) + (∇ x G)c. ∇ ⋅ (cF) = c(∇ ⋅ F)d. ∇ x (cF) = c(∇ ⋅ F)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY