Heat flux Suppose a solid object in ¡ 3 has a temperature distribution given by T ( x, y, z ). The heat flow vector field in the object is F = –k ▿ T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿· F = – k ▿·▿ T = –k ▿ 2 T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions. 57. T ( x , y , z ) = 100 e − x 2 + y 2 + z 2
Heat flux Suppose a solid object in ¡ 3 has a temperature distribution given by T ( x, y, z ). The heat flow vector field in the object is F = –k ▿ T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿· F = – k ▿·▿ T = –k ▿ 2 T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions. 57. T ( x , y , z ) = 100 e − x 2 + y 2 + z 2
Solution Summary: The author explains the heat flow vector field and its divergence. If nablacdot F=0, the vector is source free.
Heat fluxSuppose a solid object in ¡3has a temperature distribution given by T(x, y, z). The heat flow vector field in the object isF= –k▿T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿·F = –k ▿·▿T = –k▿2T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions.
57.
T
(
x
,
y
,
z
)
=
100
e
−
x
2
+
y
2
+
z
2
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Intro Stats, Books a la Carte Edition (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.