Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 44. T ( x , y , z ) = 100 + x 2 + y 2 + z 2 ; D is the unit sphere centered at the origin.
Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 44. T ( x , y , z ) = 100 + x 2 + y 2 + z 2 ; D is the unit sphere centered at the origin.
Solution Summary: The author explains the radial field of the Divergence Theorem.
Heat transferFourier’s Law of heat transfer (or heat conduction) states that the heat flow vectorFat a point is proportional to the negative gradient of the temperature; that is,F = –k▿T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s-K. A temperature function for a region D is given. Find the net outward heat flux
∬
S
F
⋅
n
d
S
=
−
k
∬
S
∇
T
⋅
n
d
S
across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1.
44. T(x, y, z) = 100 + x2 + y2 + z2; D is the unit sphere centered at the origin.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Find the indefinite integral using the substitution x = 7 sec(0). (Use C for the constant of integration.)
√ ׳ √x² - 49 dx
2
Graph of h
6. The graph of the function h is given in the xy-plane. Which of the following statements is correct?
, the graph of h is increasing at an increasing rate.
(A) For
(B) For
(C) For
苏|4 K|4
π
π
, the graph of h is increasing at a decreasing rate.
2
0 and b>1
(B) a>0 and 01
(D) a<0 and 0
3.
Consider the sequences of functions fn: [-T, π] → R,
sin(n²x)
n(2)
n
(i) Find a function f : [-T, π] R such that fnf pointwise as
n∞. Further, show that f uniformly on [-T,π] as n→ ∞.
[20 Marks]
(ii) Does the sequence of derivatives f(x) has a pointwise limit on [-7,π]?
Justify your answer.
[10 Marks]
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.