Concept explainers
Stokes’ Theorem for evaluating line
15. F = 〈y2, –z2, x〉; C is the circle r(t) = 〈3 cos t, 4 cos t, 5 sin t〉, for 0 ≤ t ≤ 2p.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
Pre-Algebra Student Edition
Thinking Mathematically (6th Edition)
College Algebra with Modeling & Visualization (5th Edition)
Elementary Statistics (13th Edition)
College Algebra (7th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Use Green's Theorem to evaluate the integral. Assume that the curve C is oriented counterclockwise. 3 In(3 + y) dx - -dy, where C is the triangle with vertices (0,0), (6, 0), and (0, 12) ху 3+y ху dy = 3 In(3 + y) dx - 3+ yarrow_forwardc) Verify Stokes's Theorem for F = (x²+y²)i-2xyj takes around the rectangle bounded by the lines x=2, x=-2, y=0 and y=4arrow_forwardSHOW COMPLETE SOLUTION. PLEASE MAKE THE SOLUTION/HANDWRITING CLEAR. THANKYOU!arrow_forward
- Please show work. This is my calculus 3 hw. Part A onlyarrow_forwardUse Green's Theorem to evaluate the line integral. Assume the curve is oriented counterclockwise. 8x + cos s-dy- (9y2 + arctan x?) dx, where C is the boundary of the square with vertices (3, 3), (5, 3), (5, 5), and (3, 5). $ 8x + cos - dy - (9y² + arctan x²) dx = D (Type an exact answer.)arrow_forwardScalar line integrals Evaluate the following line integral along the curve C.arrow_forward
- (c) Verify the line integral and surface integral by relating them to the Stokes' Theorem where C is the circle x² + y² 1 on xy-plane with a counterclockwise orientation looking down the positive z-axis. = √ x²ydx + xdyarrow_forwardonly HANDWRITTEN answer needed ( NOT TYPED)arrow_forwardEvaluate the line integral PF • dr by evaluating the surface с integral in Stokes' Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation when viewed from above. F = (-3y, -z,x) C is the circle x² + y² = 26 in the plane z = 0.arrow_forward
- Please show work. This is my calculus 3 hw. Part Barrow_forward· Using an explicit parameterization, perform the following complex con- tour integrals: z" dz [n e Z], $ z-1 dz, sin z dz, where the contours are C1 C2 C3 a b1 aarrow_forwardVerify Stokes' theorem for the function D = (ax over the first and second quadrant of a circular region bounded by a radius of 2 in the z = 0 plane. Verify Stokes' theorem over a hemispherical surface at r = 3 andarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning