Gradient fields Find the gradient field F = ▿ϕ for the potential function ϕ. Sketch a few level curves of ϕ and a few
28.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
Elementary Algebra For College Students (10th Edition)
Precalculus
Elementary & Intermediate Algebra
Precalculus: A Unit Circle Approach (3rd Edition)
Calculus: Early Transcendentals (2nd Edition)
APPLIED STAT.IN BUS.+ECONOMICS
- Consider the following assembly code for a C for loop: movl $0, %eax jmp .L2 .L3: addq $1, %rdi addq %rsi, %rax subq $1, %rsi .L2: cmpq %rsi, %rdi jl .L3 addq ret %rdi, %rax Based on the assembly code above, fill in the blanks below in its corresponding C source code. Recall that registers %rdi and %rsi contain the first and second, respectively, argument of a function. (Note: you may only use the symbolic variables x, y, and result in your expressions below do not use register names.) long loop (long x, long y) { long result; } for ( } return result; __; y--) {arrow_forwardIn each of the following C code snippets, there are issues that can prevent the compiler from applying certain optimizations. For each snippet: Circle the line number that contains compiler optimization blocker. ⚫ Select the best modification to improve optimization. 1. Which line prevents compiler optimization? Circle one: 2 3 4 5 6 Suggested solution: ⚫ Remove printf or move it outside the loop. Remove the loop. • Replace arr[i] with a constant value. 1 int sum (int *arr, int n) { 2 int s = 0; 3 for (int i = 0; i < n; i++) { 4 5 6 } 7 8 } s = arr[i]; printf("%d\n", s); return s; 234206 2. Which line prevents compiler optimization? Circle one: 2 3 4 5 6 Suggested solution: Move or eliminate do_extra_work() if it's not necessary inside the loop. Remove the loop (but what about scaling?). ⚫ Replace arr[i] *= factor; with arr[i] = 0; (why would that help?). 1 void scale (int *arr, int n, int factor) { 5 6 } for (int i = 0; i < n; i++) { rr[i] = factor; do_extra_work ();arrow_forward123456 A ROP (Return-Oriented Programming) attack can be used to execute arbitrary instructions by chaining together small pieces of code called "gadgets." Your goal is to create a stack layout for a ROP attack that calls a function located at '0x4018bd3'. Below is the assembly code for the function 'getbuf', which allocates 8 bytes of stack space for a 'char' array. This array is then passed to the 'gets' function. Additionally, you are provided with five useful gadgets and their addresses. Use these gadgets to construct the stack layout. Assembly for getbuf 1 getbuf: sub mov $8, %rsp %rsp, %rdi call gets add $8, %rsp ret #Allocate 8 bytes for buffer #Load buffer address into %rdi #Call gets with buffer #Restore the stack pointer #Return to caller Stack Layout each 8-byte (fill in section) Address Value (8 bytes) 0x7fffffffdfc0 0x7fffffffdfb8 0x7fffffffdfb0 0x7fffffffdfa8 0x7fffffffdfa0 0x7fffffffdf98 0x7fffffffdf90 0x7fffffffdf88 Gadgets Address Gadget Ox4006a7 pop %rdi; ret Ox4006a9…arrow_forward
- Problem 1 [15 points] The code below is buggy. Assume the code compiles. Briefly: 1). Identify the problem with the code (e.g., can access memory out of bounds) and 2). Suggest a solution (e.g., check the length). Question 1 1 #define BLENGTH 5 2 int b[BLENGTH]; 3 void copy_from_global_int_array_b (int n, int* dest) { 4 5 } *dest = b[n]; ==arrow_forwardWhich statement regarding SGA_MAX_SIZE is true? SGA_MAX_SIZE is modifiable after an instance is started, only when Automatic Memory Management is used. SGA_MAX_SIZE is not dyamically modifiable. SGA_MAX_SIZE is ignored when MEMORY_TARGET > 0. SGA-MAX_SIZE must be specified when SGA_TARGET > 0arrow_forwardExplian this C program #include <stdio.h> unsigned int rotateRight(unsigned int num, unsigned int bits) { unsignedint bit_count =sizeof(unsignedint) *8; bits = bits % bit_count; // Handle cases where bits >= bit_count return (num >> bits) | (num << (bit_count - bits)); } int main() { unsignedint num, bits; printf("Enter a number: "); scanf("%u", &num); printf("Enter the number of bits to shift: "); scanf("%u", &bits); printf("After rotation: %u\n", rotateRight(num, bits)); return0; }arrow_forward
- Explian thiS C program #include<stdio.h> int countSetBits(int n) { int count = 0; while (n) { count += n & 1; n >>= 1; } return count;} int main() { int num; printf("Enter a number: "); scanf("%d", &num); printf("Output: %d units\n", countSetBits(num)); return 0;}arrow_forwardPlease provide the Mathematica codearrow_forwardExplian this C program code. #include <stdio.h> void binary(unsigned int n) { if (n /2!=0) { binary(n /2); } printf("%d", n %2); } int main() { unsignedint number =33777; unsignedchar character ='X'; printf("Number: %u\n", number); printf("Binary: "); binary(number); printf("\nDecimal: %u\nHexadecimal: 0x%X\n\n", number, number); printf("Character: %c\n", character); printf("ASCII Binary: "); binary(character); printf("\nASCII Decimal: %u\nASCII Hexadecimal: 0x%X\n", character, character); return0; }arrow_forward
- Design a dynamic programming algorithm for the Longest Alternating Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest subsequence where the numbers alternate between being larger and smaller than their predecessor The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [3, 5, 4, 1, 3, 6, 5, 7, 3, 4] Output: 8 ([3, 5, 4, 6, 5, 7, 3, 4]) Example 2: Input: [4,7,2,5,8, 3, 8, 0, 4, 7, 8] Output: 8 ([4, 7, 2, 5, 3, 8, 0,4]) (Take your time with this for the subproblem for this one)arrow_forwardDesign a dynamic programming algorithm for the Coin-change problem described below: Input: An amount of money C and a set of n possible coin values with an unlimited supply of each kind of coin. Output: The smallest number of coins that add up to C exactly, or output that no such set exists. The algorithm must take O(n C) time. You must also write and explain the recurrence. Example 1: Input: C24, Coin values = = [1, 5, 10, 25, 50] Output: 6 (since 24 = 10+ 10+1+1 +1 + 1) Example 2: Input: C = 86, Coin values = [1, 5, 6, 23, 35, 46, 50] Output: 2 (since 86 = 46+35+5)arrow_forwardDesign a dynamic programming algorithm for the Longest Common Subsequence problem de- scribed below Input: Two strings x = x1x2 xm and y = Y1Y2... Yn Output: The length of the longest subsequence that is common to both x and y. . The algorithm must take O(m n) time. You must also write and explain the recurrence. (I want the largest k such that there are 1 ≤ i₁ < ... < ik ≤ m and 1 ≤ j₁ < ... < jk ≤ n such that Xi₁ Xi2 Xik = Yj1Yj2 ··· Yjk) Example 1: Input: x = 'abcdefghijklmnopqrst' and y = 'ygrhnodsh ftw' Output: 6 ('ghnost' is the longest common subsequence to both strings) Example 2: Input: x = 'ahshku' and y = ‘asu' Output: 3 ('asu' is the longest common subsequence to both strings)arrow_forward
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr

