Stokes’ Theorem for evaluating line integrals Evaluate the line integral ∮ C F ⋅ d r by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation. 11. F = 〈2 y , – z , x 〉; C is the circle x 2 + y 2 = 12 in the plane z = 0.
Stokes’ Theorem for evaluating line integrals Evaluate the line integral ∮ C F ⋅ d r by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation. 11. F = 〈2 y , – z , x 〉; C is the circle x 2 + y 2 = 12 in the plane z = 0.
Stokes’ Theorem for evaluating line integralsEvaluate the line integral
∮
C
F
⋅
d
r
by evaluating the surface integral in Stokes’ Theorem with an appropriate choice of S. Assume that C has a counterclockwise orientation.
11. F = 〈2y, –z, x〉; C is the circle x2 + y2 = 12 in the plane z = 0.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY