Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 43. T( x , y , z ) = 100 + e -z ; D = {( x , y , z ): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 43. T( x , y , z ) = 100 + e -z ; D = {( x , y , z ): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Heat transferFourier’s Law of heat transfer (or heat conduction) states that the heat flow vectorFat a point is proportional to the negative gradient of the temperature; that is,F = –k▿T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s-K. A temperature function for a region D is given. Find the net outward heat flux
∬
S
F
⋅
n
d
S
=
−
k
∬
S
∇
T
⋅
n
d
S
across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1.
43. T(x, y, z) = 100 + e-z;
D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
A graph of the function f is given below:
Study the graph of ƒ at the value given below. Select each of the following that applies for the value a = 1
Of is defined at a.
If is not defined at x = a.
Of is continuous at x = a.
If is discontinuous at x = a.
Of is smooth at x = a.
Of is not smooth at = a.
If has a horizontal tangent line at = a.
f has a vertical tangent line at x = a.
Of has a oblique/slanted tangent line at x = a.
If has no tangent line at x = a.
f(a + h) - f(a)
lim
is finite.
h→0
h
f(a + h) - f(a)
lim
h->0+
and lim
h
h->0-
f(a + h) - f(a)
h
are infinite.
lim
does not exist.
h→0
f(a+h) - f(a)
h
f'(a) is defined.
f'(a) is undefined.
If is differentiable at x = a.
If is not differentiable at x = a.
The graph below is the function f(z)
4
3
-2
-1
-1
1
2
3
-3
Consider the function f whose graph is given above.
(A) Find the following. If a function value is undefined, enter "undefined". If a limit does not exist, enter
"DNE". If a limit can be represented by -∞o or ∞o, then do so.
lim f(z)
+3
lim f(z)
1-1
lim f(z)
f(1)
= 2
=
-4
= undefined
lim f(z) 1
2-1
lim f(z):
2-1+
lim f(x)
2+1
-00
= -2
= DNE
f(-1) = -2
lim f(z) = -2
1-4
lim f(z)
2-4°
00
f'(0)
f'(2)
=
=
(B) List the value(s) of x for which f(x) is discontinuous. Then list the value(s) of x for which f(x) is left-
continuous or right-continuous. Enter your answer as a comma-separated list, if needed (eg. -2, 3, 5). If
there are none, enter "none".
Discontinuous at z =
Left-continuous at x =
Invalid use of a comma.syntax incomplete.
Right-continuous at z =
Invalid use of a comma.syntax incomplete.
(C) List the value(s) of x for which f(x) is non-differentiable. Enter your answer as a comma-separated list,
if needed (eg. -2, 3, 5).…
A graph of the function f is given below:
Study the graph of f at the value given below. Select each of the following that applies for the value
a = -4.
f is defined at = a.
f is not defined at 2 = a.
If is continuous at x = a.
Of is discontinuous at x = a.
Of is smooth at x = a.
f is not smooth at x = a.
If has a horizontal tangent line at x = a.
f has a vertical tangent line at x = a.
Of has a oblique/slanted tangent line at x = a.
Of has no tangent line at x = a.
f(a + h) − f(a)
h
lim
is finite.
h→0
f(a + h) - f(a)
lim
is infinite.
h→0
h
f(a + h) - f(a)
lim
does not exist.
h→0
h
f'(a) is defined.
f'(a) is undefined.
If is differentiable at x = a.
If is not differentiable at x = a.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.