Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible. 68. The constant-density half cylinder x 2 + z 2 = a 2 , − h / 2 ≤ y ≤ h / 2 , z ≥ 0
Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible. 68. The constant-density half cylinder x 2 + z 2 = a 2 , − h / 2 ≤ y ≤ h / 2 , z ≥ 0
Mass and center of massLet S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes (see Section 13.6) are
M
y
z
=
∬
S
x
ρ
(
x
,
y
,
z
)
d
S
,
M
x
z
=
∬
S
y
ρ
(
x
,
y
,
z
)
d
S
, and
M
x
y
=
∬
S
z
ρ
(
x
,
y
,
z
)
d
S
. The coordinates of the center of mass of the shell are
x
¯
=
M
y
z
m
,
y
¯
=
M
x
z
m
,
z
¯
=
M
x
y
m
, where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible.
A driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.
Topic 2
Evaluate S
x
dx, using u-substitution. Then find the integral using
1-x2
trigonometric substitution. Discuss the results!
Topic 3
Explain what an elementary anti-derivative is. Then consider the following
ex
integrals: fed dx
x
1
Sdx
In x
Joseph Liouville proved that the first integral does not have an elementary anti-
derivative Use this fact to prove that the second integral does not have an
elementary anti-derivative. (hint: use an appropriate u-substitution!)
1. Given the vector field F(x, y, z) = -xi, verify the relation
1
V.F(0,0,0) = lim
0+ volume inside Se
ff F• Nds
SE
where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then,
determine if the origin is sink or source.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY