Scalar line
a. Find a parametric description for C in the form
b. Evaluate
c. Convert the line integral to an ordinary integral with respect to the parameter and evaluate it.
18.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
CODE/CALC ET 3-HOLE
- Evaluate This Integral if curve C consists of curve C₁ which is a parabola y=x² from point (0,0) to point (2,4) and curve C₂ which is a vertical line segment from point (2,4) to point (2,6) if a and b are each constant.arrow_forwardCalculus 3 Module: Line Integralarrow_forwardSHOW COMPLETE SOLUTION, MAKE THE SOLUTION CLEAR. THANK YOU!arrow_forward
- Find an expression for a unit vector normal to the surface x = 10 sin (v) , y = u, z = 10 cos (v) at the image of a point (u, v) for 0arrow_forwardStokes' Theorem (1.50) Given F = x²yi – yj. Find (a) V x F (b) Ss F- da over a rectangle bounded by the lines x = 0, x = b, y = 0, and y = c. (c) fc ▼ x F. dr around the rectangle of part (b).arrow_forwardSolve using greens theoremarrow_forwardfind area of shapearrow_forwardSHOW COMPLETE SOLUTION. PLEASE MAKE THE SOLUTION/HANDWRITING CLEAR. THANKYOU!arrow_forwardWHite the veD secsand orde equation as is equivalent svstem of hirst order equations. u" +7.5z - 3.5u = -4 sin(3t), u(1) = -8, u'(1) -6.5 Use v to represent the "velocity fumerion", ie.v =(). Use o and u for the rwo functions, rather than u(t) and v(t). (The latter confuses webwork. Functions like sin(t) are ok.) +7.5v+3.5u-4 sin 3t Now write the system using matrices: dt 3.5 7.5 4 sin(3t) and the initial value for the vector valued function is: u(1) v(1) 3.5arrow_forwardUv Use the change of variable x = and y in order to v+ 4 v + 4 compute the integral 4.x + y dA. D is the quadrilateral formed by the lines with equations 4.x+y = 5, 4x+y = 6, y = x and and y = 2x.arrow_forwardDisplacement d→1 is in the yz plane 62.8 o from the positive direction of the y axis, has a positive z component, and has a magnitude of 5.10 m. Displacement d→2 is in the xz plane 37.0 o from the positive direction of the x axis, has a positive z component, and has magnitude 0.900 m. What are (a) d→1⋅d→2 , (b) the x component of d→1×d→2 , (c) the y component of d→1×d→2 , (d) the z component of d→1×d→2 , and (e) the angle between d→1 and d→2 ?arrow_forwardUse Green's Theorem to evaluate the line integral. Assume the curve is oriented counterclockwise. $(5) (5x+ sinh y)dy - (3y² + arctan x²) dx, where C is the boundary of the square with vertices (1, 3), (2, 3), (2, 4), and (1,4). false (Type an exact answer.) (5x + sinh yldy – (3y® + arctan x an x²) dx = dx = ...arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning