Circulation and flux For the following vector fields, compute (a) the circulation on and (b) the outward flux across the boundary of the given region, Assume boundary curves have counterclockwise orientation.
42.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Pre-Algebra Student Edition
Elementary Statistics: Picturing the World (7th Edition)
Thinking Mathematically (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
- c) Verify Stokes's Theorem for F = (x²+y²)i-2xyj takes around the rectangle bounded by the lines x=2, x=-2, y=0 and y=4arrow_forwardEvaluate the circulation of G = xyi+zj+7yk around a square of side 9, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis. Circulation = Prevs So F.dr-arrow_forwardNeed help with parts (d) and (e). Thank you :)arrow_forward
- Suppose that over a certain region of space the electrical potential V is given by the following equation. V(x, y, z) = 5x² - 3xy + xyz (a) Find the rate of change of the potential at P(5, 2, 5) in the direction of the vector v = i + j - k. (b) In which direction does V change most rapidly at P? 73°F Mostly cloudy (c) What is the maximum rate of change at P? Need Help? Read It Show My Work (Optional)? Watch It Qarrow_forward2. Write an inline function that returns the value of the function .2 f(t, x) = sin(Va t) cos (Tx) and also works for vectors. Test your function by plotting it over the region [0, 5] × [0, 5]. 'arrow_forwardcalculate div(F) and curl(F). F = (xy, yz, y² – x³)arrow_forward
- Channel flow The flow in a long shallow channel is modeled by the velocity field F = ⟨0, 1 - x2⟩, where R = {(x, y): | x | ≤ 1 and | y | < 5}.a. Sketch R and several streamlines of F.b. Evaluate the curl of F on the lines x = 0, x = 1/4, x = 1/2, and x = 1.c. Compute the circulation on the boundary of the region R.d. How do you explain the fact that the curl of F is nonzero atpoints of R, but the circulation is zero?arrow_forwardNeed help with part (e). Thank you :)arrow_forwardUse Green's Theorem in the form of this equation to prove Green's first identity, where D and C satisfy the hypothesis of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous. (The quantity ∇g · n = Dng occurs in the line integral. This is the directional derivative in the direction of the normal vector n and is called the normal derivative of g.)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning