Concept explainers
(a)
The velocity of the plate immediately after the impact.
Answer to Problem 13.151P
The velocity of the plate immediately after the impact is
Explanation of Solution
Given information:
Speed of the ball
Mass of the ball
Mass of the plate
General impulse-momentum principal,
Newton’s equation of motion,
Calculation:
The velocity of the ball just before impact can be calculated as follows:
Newton’s equation of motion,
The velocity of the ball just after impact can be calculated as follows:
Newton’s equation of motion,
Applying general impulse-momentum principal,
Conclusion:
The velocity of the plate immediately after the impact is
(b)
The energy loss due to the impact.
Answer to Problem 13.151P
The energy loss due to the impact is
Explanation of Solution
Given information:
Speed of the ball
Mass of the ball
Mass of the plate
General impulse-momentum principal,
Newton’s equation of motion,
Kinetic energy,
Calculation:
Velocity just before impact,
Kinetic energy just before impact,
Velocity just after impact,
Kinetic energy just before impact,
Conclusion:
The energy loss due to the impact,
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
- answer asaparrow_forwardA 32-g steel-jacketed bullet is fired with a velocity of 690 m/s toward a steel plate and ricochets along path CD with a velocity 500 m/s. Knowing that the bullet leaves a 50-mm scratch on the surface of the plate and assuming that it has an average speed of 600 m/s while in contact with the plate, determine the magnitude and direction of the impulsive force exerted by the plate on the bullet. 50 mm A 20° B C The magnitude of the impulsive force is 10° D KN and its direction is ° to the plate.arrow_forward) Initially at rest, A Mitsubishi Pajero and a Toyota Vios are connected by a tow cable. The winch on the back of the Pajero is turned on and pulls in the tow cable at a constant relative velocity of 2 m/s. If both the 1.25 Mg Vios and the 2.5 Mg Pajero are free to roll, determine: a. The velocities of the jeep and the car at the instant they meet. b. If the tow cable is 5 m long, how long does it take for the vehicles to meet? FE 5marrow_forward
- solve question completlyarrow_forward4. A 750 kg hammer is used to drive a 2500 kg pile into some loosely packed sand. The hammer is released from a height of 2.5 m above the top of the pile and is seen to rebound to a maximum height of 0.15 m above the point of impact. Determine: (a) the velocity of the pile immediately after impact, (b) the coefficient of restitution, and (c) the average force exerted by the hammer on the pile if the impact takes place over 0.08 s. 2.5 m P Ans. vp, = -2.62 m/s, e = 0.62, Favg = 81.9 kN %3Darrow_forwardA 1-lb stone is dropped down the “bottomless pit” at Carlsbad Caverns and strikes the ground with a speed of 95 ft/s. Neglecting air resistance, (a) determine the kinetic energy of the stone as it strikes the ground and the height h from which it was dropped. (b) Solve part aassuming that the same stone is dropped down a hole on the moon. (Acceleration of gravity on the moon = 5.31 ft/s2).arrow_forward
- A 0.25-lb ball thrown with a horizontal velocity v0 strikes a 1.5-lb plate attached to a vertical wall at a height of 36 in. above the ground. It is observed that after rebounding, the ball hits the ground at a distance of 24 in. from the wall when the plate is rigidly attached to the wall (Fig. 1) and at a distance of 10 in. when a foam-rubber mat is placed between the plate and the wall (Fig. 2). Determine (a) the coefficient of restitution e between the ball and the plate, (b) the initial velocity v0 of the ball.arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = 0= IN P 77 M m/s² rad/s²arrow_forward
- Two steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forwardA 500-g collar can slide without friction on the curved rod BC in a horizontal plane. Knowing that the undeformed length of the spring is 80 mm and that k= 400 kN/m, determine (a) the velocity that the collar should be given at A to reach B with zero velocity, (b) the velocity of the collar when it eventually reaches C.arrow_forwardA 5.0-kg ball rolls without sliding from rest down an inclined plane. A 4.0- kg block, mounted on roller bearings totaling 100 g, rolls from rest down the same plane. At the bottom, the block has: greater speed than the ball greater or less speed than the ball, depending on the angle of inclination greater or less speed than the ball, depending on the radius of the ball the same speed as the ball less speed than the ballarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY