Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 13.F5P
To determine
The impulse momentum diagram.
The magnitude of the velocity of each sphere immediately after the cord has become taut.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two identical spheres A and B each of mass m , are attached to an inextensible inelastic cord of length L and are resting at a distance a from each other on a frictionless horizontal surface. Sphere B is given a velocity v0 in a direction perpendicular to line AB and moves it without friction until it reaches B ’ where the cord becomes taut. Draw the impulse-momentum diagram that can be used to determine the magnitude of the velocity of each sphere immediately after the cord has become taut.
PROBLEM NO. 3
A 5-kg collar slides from A to B along a frictionless vertical rod as shown. The spring attached to the collar has an
undeformed (initial) length of 4 m and a spring constant of 30 N/m. What is the collar's velocity at point B?
8.0 m
A
B
1.5 m
As shown in the figure, a ball of mass m is
connected to a string of length I to the top of a cone with
frictionless sides. The cone is resting on the horizontal
surface and the axis of the cone is vertical, making an
angle of 30° with the side surface of the cone. The ball
moves in a horizontal circle at a uniform speed v centered
about the vertical axis of the cone. If the velocity v of the
ball is greater than a certain velocity vo, it will lose contact
with the surface of the cone and the angle o between the
string and the vertical will no longer be 30°.
30!
i.
Prove that v, = Jgl sin 30° tan 30°.
ii.
Determine the tension T, in the string if the velocity of the ball is v =
3gl
2
(express you answer in terms of mg). Determine the angle p.
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - A 1-Ib stone is dropped down the “bottomless pit”...Ch. 13.1 - A baseball player hits a 5.1-oz baseball with an...Ch. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - In an ore-mixing operation, a bucket full of ore...Ch. 13.1 - Determine the maximum theoretical speed the may be...Ch. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - A package is projected up a 15° incline at A with...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Blocks A and B weigh 25 Ib and 10 Ib,...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 3-kg packages are held in place by friction...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A piston of mass m and cross-sectional area A is...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 4-Ib collar can slide without friciton along a...Ch. 13.2 - A 4-Ib collar can slide without friction along a...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - A 2-kg collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - Prob. 13.70PCh. 13.2 - Prob. 13.71PCh. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is released from rest at A and...Ch. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The system shown is at rest when a constant 150-N...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 25-ton railroad car moving at 2.5 mi/h is to be...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - A 1-az bullet is traveling with velocity of 1400...Ch. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Prob. 13.155PCh. 13.4 - Collars A and B, of the same mass m, are moving...Ch. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - A 32,000-Ib airplane lands on an aircraft carrier...Ch. 13 - A 2-oz pellet shot vertically from a spring-loaded...Ch. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 300-g collar A is released from rest, slids down...Ch. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A The diagram shows the instant when a long slender bar of mass 2.2 kg and length 1.5 m is horizontal. At this instant the mass m= 6.1 kg has a vertical velocity of 4.6 m/s. If the pulley has negligible mass and all friction effects may be ignored, what is the magnitude of the reaction force on the bearing A? Answer:arrow_forwardSlider C has a mass of 0.5 kg and may move in a slot cut in arm AB, which rotates at constant speed in a horizontal plane. The slider is attached to a spring of constant k = 150 N/m, which is unstretched when r = 0. When arm AB rotates about the vertical axis, the slider moves without friction outward along the smooth slot cut. Determine for the position r = 80 mm: a) The constant speed (V) of the slider. b) The normal force (N) exerted on the slider by arm AB. A r=80mm Barrow_forward. A device called air-track glider has a mass of 150gm is attached to the end of a horizontal air-track by a spring with a force constant 20N/m as shown below. Initially the spring is unstretched and the glider is moving at 3.50m/s to the right. Find the maximum distance d that the glider moves to the right, if the air is turned off, so that there is kinetic friction with coeficient He=0.40 gliderarrow_forward
- The platform swing consists of a 190-lb flat plate suspended by four rods of negligible weight. When the swing is at rest, the 170-lb man jumps off the platform when his center of gravity G is 10 ft from the pin at A. This is done with a horizontal velocity of 5 ft/s, measured relative to the swing at the level of G. (Eigure 1) Figure 1 of 1 10 ft 11 ft 4 ftarrow_forward1. The use of a "tether sling" is a proposed method for increasing the velocity of a spacecraft for lunar and interplanetary missions. A tether sling between two spacecraft of masses 10,000 kg each is shown below. Assume that each spacecraft's engine provides a 1000 N propulsive force in a direction normal to the sling for 10 seconds. The length 1 of the tether is 100 km during this maneuver. Use the principle of angular momentum and impulse to determine the velocity of the two spacecraft after this time. Determine the velocity of the two spacecraft if the propulsive force is then stopped and the tether is reeled into a length of 100 m. Use the system center of mass G as a reference point for computing angular momentum and moments. G Larrow_forwardA 200-lb block is sliding along a horizontal plane at 4 ft/s when a force P is applied on it as shown. The magnitude of P varies according to the relation P = 200t Ib where t is in sec. Find the velocity of the block 2 sec after P is applied. Neglect friction. Use Impulse-Momentum Method and draw the momenta and impulse vectors. 4 fes 200 lbarrow_forward
- An 80-Mg railroad engine A coasting at 6.5 km/h strikes a 20-Mg flatcar C carrying a 30-Mg load B which can slide along the floor of the car (μk= 0.25). The flatcar was at rest with its brakes released. Instead of A and C coupling as expected, it is observed that A rebounds with a speed of 2 km/h after the impact. Draw impulse-momentum diagrams that can be used to determine (a) the coefficient of restitution and the speed of the flatcar immediately after impact, (b) the time it takes the load to slide to a stop relative to the car.arrow_forwardASAParrow_forwardA lightweight drone (1.00 kg) is launched at 800 m high and moves upward at a constant velocity (while ignoring the effects of gravity only on the drone). The balloon, when measured at a horizontal distance from you, is about 1600 m away from you. At the moment when the drone moves, you shoot a bullet (weight =180 g) with an initial velocity of 1009 m/s at a fixed angle α, where sin α=3/5 and cos α= 4/5. (g = 9.8 m/s2) Question: Provided that the collision is inelastic, calculate the speed after the collisionarrow_forward
- dynamicarrow_forwardSUPPLEMENTAL STUDY PROBLEMarrow_forwardCollision at an Angle To apply conservation of linear momentum in an inelastic collision. Two cars, both of mass m, collide and stick together. Prior to the collision, one car had been traveling north at a speed 2v, while the second was traveling in a southeastern direction at an angle ϕ with respect to the east-west direction and at a speed v. After the collision, the two-car system travels in a northeastern direction at an angle θ with respect to the north-south direction and at a speed v final. Find v final, the speed of the joined cars after the collision. Express your answer in terms of v and ϕ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY