A 2-kg collar is attached to a spring and slides without friction in a vertical plane along the curved rod ABC. The spring is undeformed when the collar is at C and its constant is 600 N/m. if the collar is released at A with no initial velocity, determine its velocity (a) as it passes through B, (b) as it reaches C.
(a)
Velocity of collar as it passes through
Answer to Problem 13.64P
Velocity of collar as it passes through
Explanation of Solution
Given:
Mass of collar is
Spring constant is
Initial velocity at
Concept used:
Refer to Fig.P13.64;
Calculate the elongation of the spring when collar is at point
Here,
Calculate the elongation of the spring when collar is at point
Here,
Calculate the elongation of the spring when collar is at point
Here,
Write the expression for Potential energy of spring at point
Here,
Write the expression for Potential energy of spring at point
Here,
Write the expression for Potential energy of spring at point
Here,
Write the expression for the kinetic energy of collar at point
Here,
Write the expression for the kinetic energy of collar at point
Here,
Write the expression for the kinetic energy of collar at point
Here,
Consider the datum to be the surface.
Write the expression for the gravitational potential energy at point
Here,
The gravitational potential energy at point
Write the expression of conservation of energy for the system at point
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Simplify the above expression for
Velocity of collar as it passes through
Conclusion:
Thus, Velocity of collar as it passes through
(b)
Velocity of collar as it passes through
Answer to Problem 13.64P
Velocity of collar as it passes through
Explanation of Solution
Write the expression of conservation of energy for the system at point
Calculation:
Substitute
Substitute
Simplify the above expression for
Velocity of collar as it passes through
Conclusion:
Thus, Velocity of collar as it passes through
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY