Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.1, Problem 13.46P
A chairlift is designed to transport 1000 skiers per hour from the base A to the summit B. The average mass of a skier is 70 kg and the average speed of the lift is 75 m/min. Determine (a) the average power required. (b) the required capacity of the motor if the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To apply the work-energy theorem.An alpine rescue team member must propel a box of supplies, with mass m, up an incline that makes an angle θ with the horizontal so that it reaches a stranded skier who is a vertical distance h above the bottom of the incline. The incline is slippery, but there is some friction present; the kinetic friction coefficient is μk.
Use the work-energy theorem to calculate the minimum speed, v, that the member must impart to the box at the bottom of the incline so that it will reach the skier.
Express your answer in terms of some or all of the variables m, g, h, μk, and θ.
4. A train of total mass 650 t is hauled by a locomotive along a level track at a constant speed
of 60 km/h. If the tractive resistance is 85 N/t mass of the train, calculate the power
developed at this speed.
Problem 3: A 75-kg box at rest is pulled by a force of 350 N acting parallel to the ground.
Using the work and energy principle, determine the distance travelled by the box by the time its
speed reaches 10 m/s. The coefficient of kinetic friction between the crate and the ground is 0.25.
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - A 1-Ib stone is dropped down the “bottomless pit”...Ch. 13.1 - A baseball player hits a 5.1-oz baseball with an...Ch. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - In an ore-mixing operation, a bucket full of ore...Ch. 13.1 - Determine the maximum theoretical speed the may be...Ch. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - A package is projected up a 15° incline at A with...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Blocks A and B weigh 25 Ib and 10 Ib,...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 3-kg packages are held in place by friction...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A piston of mass m and cross-sectional area A is...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 4-Ib collar can slide without friciton along a...Ch. 13.2 - A 4-Ib collar can slide without friction along a...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - A 2-kg collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - Prob. 13.70PCh. 13.2 - Prob. 13.71PCh. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is released from rest at A and...Ch. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The system shown is at rest when a constant 150-N...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 25-ton railroad car moving at 2.5 mi/h is to be...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - A 1-az bullet is traveling with velocity of 1400...Ch. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Prob. 13.155PCh. 13.4 - Collars A and B, of the same mass m, are moving...Ch. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - A 32,000-Ib airplane lands on an aircraft carrier...Ch. 13 - A 2-oz pellet shot vertically from a spring-loaded...Ch. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 300-g collar A is released from rest, slids down...Ch. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. In a spring loaded governor of the Hartnell type, the mass of each ball is 5 kg and the lift of the sleeve is 50 mm. The speed at which the governor begins to float is 240 rpm, and at this speed the radius of the ball path is 110 mm. The mean working speed of the governor is 20 times the range of speed when friction is neglected. If the lengths of ball and roller arm of the bell crank lever are 120 mm and 100 mm respectively. If the distance between the center of pivot of bell crank lever and axis of governor spindle is 140 mm, determine the initial compression of the spring. If friction is equivalent to a force of 3O N at the .sleevearrow_forwardKhufra works at a spring factory and he was assigned to test a certain spring, whose constant is 80 N/m, attached to a 22-kg block in an incline (0 = 55°). With the spring initially at equilibrium position, the block was pushed 0.5 meters up the incline by a 42-N external force applied parallel to the path. If the coefficient of kinetic friction is 0.3, determine the work done by the spring (in Joules). Use g = 9.81 m/s². COarrow_forwardThe cabin of a tram is suspended from a set of wheels that can roll freely on the support cable ACB and is being pulled at a constant speed by cable DE. Given a = 42° and ß = 32°, the tension in cable DE is 20 kN, and assuming the tension in cable DF is negligible, what is: a. the combined weight of the cabin, its support system, and its passengers? b. the tension in the support cable ACB? You can assume AC and ED are parallel! a 3arrow_forward
- В A chair-lift is designed to transport 1000 skiers per hour from the base A to the summit B. The average mass of a skier is 70 kg and the average speed of the lift is 75 m/min. Determine (a) the average power required, (b) the required capacity of the motor if the mechanical efficiency is 85 percent and if a 300 percent overload is to be allowed. 300 m А 750 marrow_forwardBlock 2 of mass 1.30 kg is stacked on top of another Block 1 of mass 8.60 kg on an incline plane of angle 38° with respect to the horizontal. The two blocks are linked by a rope which passes over a pulley at the top of the incline, as shown in the diagram. The coefficient of kinetic friction between all surfaces is 0.45. (g = 9.8m/s2,cos 38° = 0.788, sin 38° = 0.616) a) Draw the free body diagrams of each block, b) Write Newton's second law components for each block, c) What is the acceleration of each block? d) If the coefficient of static friction between all surfaces is 0.3 find the angle 0 the plane must be inclined for sliding to commence. NOTE: Solutions involving the energy will not be accepted. 38.0arrow_forwardA car delivers 160 hp to a winch used to raise a load of 1260 kg . Determine the maximum speed of lift.arrow_forward
- Consider a person who momentarily puts all of their body weight on one leg when walking or running. The forces acting on the leg and the corresponding biomechanical model of the system are shown in Fig.- Prob. 10(a) and (b). Point O corresponds to the center of rotation of the hip joint. A is the connection point of the hip abductor muscle with the femur; point B is the center of gravity of the leg; and C is the point of application of the ground reactive force. The distances between point A and points O, B, and C are: a = 8.6 cm, b = 34.3 cm, and c = 89.4 cm. The angles formed by the femoral neck and the longitudinal axis of the femur with respect to the horizontal are alpha = 43° and beta = 79°, respectively. Furthermore, for this position of the person standing on one leg, it has been estimated that the magnitude of the force exerted by the hip abductor muscle is FM = 2062.6 N and its line of action forms an angle of theta = 69° with respect to the horizontal. If the magnitude of…arrow_forwardPravinbhaiarrow_forwardThe horizontal position of the 500lb block (B) is adjusted by the 7° wedge (A) under the action of the force "P". The contact surfaces between the block and the wedge are vertical, (neglect the weight of the wedge) If: P=100 lbs / HA = 0.2 / HB = 0.1 Determine the coefficient of friction (Hc) between the 500lb block (B) and the horizontal surface if the entire system is in impending motion. UB 7. B PAarrow_forward
- For the delivery truck shown: The mass of the truck is 4000 kg. The horizontal distance from the rear tires to the center of mass, G, is L1 = 3 m The vertical distance from the ground to G is d = 3m The horizontal distance from the rear tires to the front tires is L2 = 5 m. d The delivery truck is traveling at 20 m/s when the brakes are applied. The truck skids to a stop, so that the friction force is applied to the tires by the road.* The coefficient dynamic friction is uk = 0.60 *If it did not skid, then the friction force would be between the brake pads and the brake disc, which would be above the road. Calculate the distance that the truck travels before it stops. Use Σ MA = Ia + d x m*a for the following: 'O' Calculate the left side of this equation: Σ MA G L1 → L2 Calculate the right side of this equation: I*α + d x m*a d+ x m*a is from r x m*a (cross product), so, determine the sign by considering the cross product. Set the left and right right sides equal to each other and…arrow_forwardFor a technology project, a student has built a vehicle, of total mass 6.00 kg, that moves itself. As shown, it runs on four light wheels. A reel is attached to one of the axles, and a cord originally wound on the reel goes up over a pulley attached to the vehicle to support an elevated load. After the vehicle is released from rest, the load descends very slowly, unwinding the cord to turn the axle and make the vehicle move forward (to the left as shown). Friction is negligible in the pulley and axle bearings. The wheels do not slip on the floor. The reel has been constructed with a conical shape so that the load descends at a constant low speed while the vehicle moves horizontally across the floor with constant acceleration, reaching a final velocity of 3.00î m/s. (a) Does the floor impart impulse to the vehicle? If so, how much? (b) Does the floor do work on the vehicle? If so, how much? (c) Does it make sense to say that the final momentum of the vehicle came from the floor? If…arrow_forwardWhat is the tension in the cord that connects the two blocks? What is the coefficient of kinetic friction that one block exerts on the other?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License