Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.2, Problem 13.101P
To determine
(a)
Velocity of IUS relative to the shuttle after its engine has been fired at A.
To determine
(b)
Increase in velocity required at B to place the satellite in its final orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8.11 Estimate the total delta-v requirement for a Hohmann transfer from earth to Mercury, assuming a
150-km-altitude circular parking orbit at earth and a 150-km circular capture orbit at Mercury.
Furthermore, assume that the planets have coplanar circular orbits with radii equal to the
semimajor axes listed in Table A.1.
{Ans.: 13.08 km/s}
A satellite is in a circular earth orbit of radius min = 1.66R, where R is the radius of the earth. What is the minimum velocity boost Av
necessary to reach point B, which is a distance max = 3.94R from the center of the earth? At what point in the original circular orbit
should the velocity increment be added?
CO
Answer: Av = i
max
m/s
A space probe is to be placed in a circular orbit of radius 4o00 km about the planet Mars. As the probe reaches A, the point of its
original trajectory closest to Mars, it is inserted into a first elliptic transfer orbit by reducing its speed. This orbit brings it to Point B with
a much reduced velocity. There the probe is inserted into a second transfer orbit by further reducing its speed. Knowing that the mass
of Mars is 0.1074 times the mass of the earth, that ra= 9004 km and rg= 180 004 km, and that the probe approaches A on a parabolic
trajectory, determine the time needed for the space probe to travel from A to Bon its first transfer orbit.
Approach trajectory
Second transfer orbit
В
4000 km
First
transfer
orbit
The time needed for the space probe to travel from A to B on its first transfer orbit is
|h.
Chapter 13 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - A 1-Ib stone is dropped down the “bottomless pit”...Ch. 13.1 - A baseball player hits a 5.1-oz baseball with an...Ch. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - In an ore-mixing operation, a bucket full of ore...Ch. 13.1 - Determine the maximum theoretical speed the may be...Ch. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - A package is projected up a 15° incline at A with...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Blocks A and B weigh 25 Ib and 10 Ib,...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 3-kg packages are held in place by friction...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A piston of mass m and cross-sectional area A is...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 4-Ib collar can slide without friciton along a...Ch. 13.2 - A 4-Ib collar can slide without friction along a...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - A 2-kg collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - Prob. 13.70PCh. 13.2 - Prob. 13.71PCh. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is released from rest at A and...Ch. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The system shown is at rest when a constant 150-N...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 25-ton railroad car moving at 2.5 mi/h is to be...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - A 1-az bullet is traveling with velocity of 1400...Ch. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Prob. 13.155PCh. 13.4 - Collars A and B, of the same mass m, are moving...Ch. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - A 32,000-Ib airplane lands on an aircraft carrier...Ch. 13 - A 2-oz pellet shot vertically from a spring-loaded...Ch. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 300-g collar A is released from rest, slids down...Ch. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How much energy per pound should be imparted to a satellite in order to place it in a circular orbit at an altitude of (a) 400 mi, (b) 4000 mi?arrow_forwardA spacecraft approaching the planet Saturn reaches point A with a velocity vA of magnitude 68.8 × 103 ft/s. It is to be placed in an elliptic orbit about Saturn so that it will be able to periodically examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit of radius 183 × 103 mi about the center of Saturn, traveling at a speed of 37.2 × 103 ft/s. Determine (a) the decrease in speed required by the spacecraft at A to achieve the desired orbit, (b) the speed of the spacecraft when it reaches the orbit of Tethys at B.arrow_forwardIn Prob. 13.109, a space vehicle was in a circular orbit at an altitude of 225 mi above the surface of the earth. To return to earth it decreased its speed as it passed through A by firing its engine for a short interval of time in a direction opposite to the direction of its motion. Its resulting velocity as it reached point B at an altitude of 40 mi formed an angle fB = 60° with the vertical. An alternative strategy for taking the space vehicle out of its circular orbit would be to turn it around so that its engine pointed away from the earth and then give it an incremental velocity DvA toward the center O of the earth. This would likely require a smaller expenditure of energy when firing the engine at A, but might result in too fast a descent at B. Assuming that this strategy is used, use computational software to determine the values of fB and vB for an energy expenditure ranging from 5 to 100 percent of that needed in Prob. 13.109. 13.109. A space vehicle is in a circular…arrow_forward
- A satellite describes an elliptic orbit of minimum altitude 606 km above the surface of the earth. The semimajor and semiminor axes are 17,440 km and 13,950 km, respectively. Knowing that the speed of the satellite at Point C is 4.78 km/s, determine (a) the speed at Point A, the perigee, (b) the speed at Point B, the apogee. 606 km R = 6370 km 13 950 km B, A 17 440 km 17 440 kmarrow_forwardA spacecraft of mass m describes a circular orbit of radius ị around the earth. (a) Show that the additional energy AE that must be imparted to the spacecraft to transfer it to a circular orbit of larger radius r, is GMm(r2 – r¡) ΔΕ= where M is the mass of the earth. (b) Further show that if the transfer from one circular orbit to the other is executed by placing the space- craft on a transitional semielliptic path AB, the amounts of energy AE, and AEg which must be imparted at A and B are, respectively, proportional to r, and r¡: ΔΕΞ ΔΕΔΕ, ΔΕarrow_forwardA satellite is in a circular earth orbit of radius I'min = 1.67R, where R is the radius of the earth. What is the minimum velocity boost Av necessary to reach point B, which is a distance max = 2.68R from the center of the earth? At what point in the original circular orbit should the velocity increment be added? Answer: Av= i min max B m/sarrow_forward
- can someone solve this step by step on a paper specially the figurearrow_forward8 A spacecraft of mass m moves around the Earth (which we consider stationary) at elliptical orbit with eccentricity e=0.5 and major semi-axis a. At the moment t=0 the boat passes the pericenter of its orbit with speed uo. a) How much should we increase the measure of the boat's speed in relation to uo so that its trajectory becomes parabolic? b) On the parabolic trajectory, at what distance, in relation to the initial one, will where the boat is when its speed again becomes equal to uo? c) What will be the angular momentum of the boat with respect to the Earth in the above distance?arrow_forwardDuring lecture we discussed that an elliptical orbit is not necessarily helpful to escapeEarth, and we said we would not investigate that further (but you are welcome on yourown).However, it is useful to investigate the radius of the “best” (ie, lowest Δv) circular parkingorbit. For this problem consider the following “steps” to Escape Earth:1. A Hohmann transfer from the surface to the parking orbit (i.e., 2 Δv’s).Assumptions:a. launch exactly from the equator with zero velocity relative to thegroundb. there is no atmosphere, mountains, obstacles, etc - the Δv canhappen in the tangential direction from the groundc. Simplify for now and use the Earth rotation = 1 revolution in 24hours2. A Δv from the parking orbit to escape Earth3. The target velocity is exactly vesc (i.e., there is no v∞ for a specificdestination, we just want to escape Earth)For all Δv’s you can ignore the direction, only consider magnitude.a. Develop an equation (or function in Matlab or a spreadsheet) which takes…arrow_forward
- A satellite describes an elliptic orbit of minimum altitude 606 km above the surface of the earth. The semimajor and semiminor axes are 17 440 km and 13 950 km, respectively. Knowing that the speed of the satellite at point C is 4.78 km/s, determine (a) the speed at point A, the perigee, (b) the speed at point B,the apogee.arrow_forwarddetermine (a) the speed of the vehich as it approaches B on the elliptic path, (b) the amount by which its speed should be reduced as it approaches B to insert it into the smaller circular orbit.arrow_forwardCan you please help me just with D, F,G harrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY