Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 99P
A thin rod with mass M = 5.00 kg is bent in a semicircle of radius R = 0.650 m (Fig. 13-56). (a) What is its gravitational force (both magnitude and direction on a particle with mass m = 3.0 × 10-3 kg at P, the center of curvature? (b) What would be the force on the particle if the rod were a complete circle?
Figure 13-56 Problem 99.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Fig. 13-32, a square of edge length mị
20.0 cm is formed by four spheres of masses
m; = 5.00 g, m, = 3.00 g, m3 = 1.00 g, and
m4 = 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass m, = 2.50 g?
•7 One dimension. In Fig. 13-33, two
point particles are fixed on an x axis sepa- mg
roted bu dictonged Porticle 4 hor morc m
•6
B
A thin rod with mass M = 5.00 kg is bent in a semicircle of radius R=0.650 m (a) What is its gravitational force (both magnitude and direction on a particle with mass m = 3.0 * 10-3 kg at P, the center of curvature? (b) What would be the force on the particle if the rod were a complete circle?
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An operating room has a positive gage pressure, whereas an engine test cell has a vacuum; why is that?
Fundamentals Of Thermodynamics
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
You have isolated (1) a streptomycin-resistant mutant (strR) of Chlamydomonas that maps to the chloroplast geno...
Genetic Analysis: An Integrated Approach (3rd Edition)
6.1 State the number of electrons that be must be lost by atoms of each of the following to achieve a stable el...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Practice Problem 1.22 Which of the following alkenes can exist as cis-trans isomers? Write their structures. Bu...
Organic Chemistry
Classify each molecule as polar nonpolar. a. CS2 b. SO2 c. CH4 d. CH3CI
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The “mean” orbital radius listed for astronomical objects orbiting the Sun is typically not an integrated average but is calculated such that it gives the correct period when applied to the equation for circular orbits. Given that, what is the mean orbital radius in terms of aphelion and perihelion?arrow_forwardThe moon orbits the earth along a path of radius 3.84 x 108 m , a spaceship of mass 30000 Kg orbits the Earth along a path of radius 2.8 x 108 m. calculate: a) The gravitational force exerted on the spaceship when it is at the line joints the centers of the earth and the moon. b) the gravitational field strength of the Earth at a point that locates at the orbit of the spaceship. G = 6.67 x 10-11 Nm2/Kg2 ME = 6 x 1024 Kg , Mm = 7.35 x 1022 Kgarrow_forwardCurrent Attempt in Progress One model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M-2.97 x 1024 kg and R-8.31 x 10 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number (b) Number Units Unitsarrow_forward
- 7 of 16 (a) Number 0.37/1 A solid sphere of uniform density has a mass of 9.3 × 104 kg and a radius of 3.4 m. What is the magnitude of the gravitational force due to the sphere on a particle of mass 7.5 kg located at a distance of (a) 12 m and (b) 2.7 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r ≤ 3.4 m from the center of the sphere. 3.23 (b) Number i 1.4 Units Units E (c) |Fon m = k·r, where k = i N N > <arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardAn exotic planet Vogsphere is known to have a mass that is 1/81 that of the Earth and a radius 0.25 that of the Earth. Astrophysicist Trillian built a rocket and decided to leave the planet and never to return. Given that the escape speed from the Earth is 11.2 km/s, with what speed must Trillian achieve his goal?arrow_forward
- A uniform distribution of dust in the solar system adds to the gravitational attraction of the Sun on a planet an additional forceF = −m C rwhere m is the mass of the planet, C is a constant proportional to the gravitational constant and the density of the dust, and r is the radius vector from the Sun to the planet (both considered as points). This additional force is very small compared to the direct Sun-planet gravitational force.Calculate the period for a circular orbit of radius r0 of the planet in thiscombined field.arrow_forwardNeeds Complete solution with 100 % accuracy.arrow_forwardA spherical shell has uniform density of 4.6 kg/m³. It has an inner radius 2.5 m and outer radius 4.2 m. The magnitude of the gravitational force exerted on the shell by a point mass particle of mass 9.5 kg a distance 2.1 m from the center, is 6.5 x 10 ⁹ N 24 x 10 N 3.2 x 10¹ N O 1.1 x 10 N ONarrow_forward
- Four uniform spheres, with masses ma 65 kg, MB = 10 kg, mc 190 kg, and mp notation, what is the net gravitational force on sphere B due to the other spheres? - = 45 kg, have (x, y) coordinates of (0, 50 cm), (0, 0), (−80 cm, 0), and (40 cm, 0), respectively. In unit-vectorarrow_forward(a) (i) Define gravitational field strength and state whether it is a scalar or vector quantity. A mass m is at a height h above the surface of a planet (ii) of mass M and radius R. The gravitational field strength at height h is g. By considering the gravitational force acting on massm, derive an equation from Newton's law of gravitation to express g in terms of M, R, h and the gravitational conșțant G.arrow_forward**68 @ Two small spaceships, each with mass m = 2000 kg, are in the circular Earth orbit of Fig. 13-51, at an altitude h of 400 km. Igor, the commander of one of the ships, arrives at any fixed point in the orbit 90 s ahead of Picard, the commander of the other ship. What are the (a) period To and (b) speed Vo of the ships? At point P in Fig. 13-51, Picard fires an instanta- neous burst in the forward direction, reducing his ship's speed by 1.00%. After this burst, he follows the ellip- tical orbit shown dashed in the fig- ure. What are the (c) kinetic energy and (d) potential energy of his ship immediately after the burst? In Picard's new elliptical orbit, what are (e) the total energy E, (f) the semimajor axis a, and (g) the orbital peripd T? (h) How much earlier than Igor will Picard return to P? Figure 13-51 Problem 68.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY