Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 79P
To determine
To find:
An expression for the period of revolution of the stars
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
68
Two small spaceships, each with mass m = 2000 kg, are
in the circular Earth orbit of Fig. 13-50, at an altitude h of 400 km.
Igor, the commander of one of the
ships, arrives at any fixed point in
the orbit 90 s ahead of Picard, the
commander of the other ship. What
are the (a) period T, and (b) speed
Vo of the ships? At point P in Fig.
13-50, Picard fires an instantaneous
R
M
burst in the forward direction, re-
ducing his ship's speed by 1.00%.
After this burst, he follows the el-
liptical orbit shown dashed in the
figure. What are the (c) kinetic en-
ergy and (d) potential energy of his ship immediately after the
burst? In Picard's new elliptical orbit, what are (e) the total energy
E, (f) the semimajor axis a, and (g) the orbital period T? (h) How
much earlier than Igor will Picard return to P?
Fig. 13-50 Problem 68.
Physics
A white dwarf is the remnant core of a previous star < 8 solar masses that has about the mass of the Sun but the radius of the Earth. What would be (1) the orbital speed and (2) the orbital period for a spacecraft in orbit just above the surface of the white dwarf?
In Fig. 13-32, a square of edge length mị
20.0 cm is formed by four spheres of masses
m; = 5.00 g, m, = 3.00 g, m3 = 1.00 g, and
m4 = 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass m, = 2.50 g?
•7 One dimension. In Fig. 13-33, two
point particles are fixed on an x axis sepa- mg
roted bu dictonged Porticle 4 hor morc m
•6
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two stars of masses M and m, separated by a distance d, revolve in circular orbits about their center of mass (Fig. P11.50). Show that each star has a period given by T2=42d3G(M+m) Proceed as follows: Apply Newtons second law to each star. Note that the center-of-mass condition requires that Mr2 = mr1, where r1 + r2 = d.arrow_forwardA massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardUsing Figure 13.9, carefull sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda, labeling all forces acting on the point mass,m. Set up the equations of motion for equilibrium, setting one coordinate in the direction of the centripetal accleration (toward P in the diagram), the other perpendicular to that. Show that the deflection angle , defined as the angle between the pendulum string and the radial direction toward the center of Earth, is given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere. tan(+)=gg2REtan , where is the angular velocity of Earth.arrow_forward
- On a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardTwo double stars, one having mass 1.0 Msun and the other 3.0 Msun, rotate about their common center of mass. Their separation is 6 light years. What is their period of revolution?arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forward
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forward15-113. An earth satellite of mass 700 kg is launched into a free-flight trajectory about the earth with an initial speed of va = 10 km/s when the distance from the center of the earth is ra = 15 Mm. If the launch angle at this position is dA = 70°, determine the speed vg of the satellite and its closest distance rg from the center of the earth. The earth has a mass M. = 5.976(10²4) kg. Hint: Under these conditions, the satellite is subjected only to the earth's gravitational force, F = GM ¸m,/r, Eq. 13–1. For part of the solution, use the conservation of energy. в TAarrow_forwardYou are working at a summer internship for NASA, working to study exoplanets (planets we have detected around other stars). Calculate the orbital radius (distance of the planet to the star) of the newly detected planet Beta Sirius, if its' orbital period around its star is 5.51 x 107 s. You know from the data that the star has a mass of 2.21 x 1029 kg, and a radius of 2.70 x 106 and the planet has a mass of 3.00 x 1022 kg. Your Answer: Answerarrow_forward
- m form an orbit of radius (2R) to (3R) is (a) Energy required to move a body of mass (c) GM m 12R² GM m 8R (b) GM m 3R² (d) GM m 6Rarrow_forwardC6M.9 Astar with mass M and radius R collides with another star of massM and radius R, and coalesce to form a new star at rest whose radius is R. Assume that initially the colliding stars had angular velocities with opposite direc- tions but the same magnitude | What is the magnitude and direction of the final star's angular velocity? (Express the magnitude as a fraction of )arrow_forwardThe radius Rhand mass Mh of a black hole are related by R₁ = 2GM₁/c², where c is the speed of light. Assume that the gravitational acceleration as of an object at a distance r= 1.001Rh from the center of a black hole is given by ag = GM/r² (it is, for large black holes). (a) In terms of Mh, find ag at ro. (b) Does sag at ro increase or decrease as M₁ increases? (c) What is ag at ro for a very large black hole whose mass is 1.54 × 10¹3 times the solar mass of 1.99 × 10³⁰ kg? (d) If an astronaut with a height of 1.66 m is at råwith her feet toward this black hole, what is the difference in gravitational acceleration between her head and her feet ahead-afeet? (e) Is the tendency to stretch the astronaut severe?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill