Concept explainers
GO In Fig. 13-37a, particle A is fixed in place at x = −0.20 m on the x axis and particle B. with a mass of 1.0 kg, is fixed in place at the origin. Particle C (not shown) can be moved along the x axis, between particle B and x = ∞. Figure 13-37b shows the x component Fnet, x of the net gravitational force on particle B due to particles A and C, as a function of position x of particle C. The plot actually extends to the right, approaching an asymptote of −4.17 × 10−10 N as x → ∞. What are the masses of (a) particle A and (b) particle C?
Figure 13-37 Problem 12.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Concepts of Genetics (12th Edition)
Chemistry: A Molecular Approach (4th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Principles of Anatomy and Physiology
Cosmic Perspective Fundamentals
Organic Chemistry (8th Edition)
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardIn the figure, three 9.74 kg spheres are located at distances d₁ = 0.953 m, and d₂ = 0.215 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? (a) Number i (b) Number i dr B Units Units î ✪arrow_forward
- Four uniform spheres, with masses ma 65 kg, MB = 10 kg, mc 190 kg, and mp notation, what is the net gravitational force on sphere B due to the other spheres? - = 45 kg, have (x, y) coordinates of (0, 50 cm), (0, 0), (−80 cm, 0), and (40 cm, 0), respectively. In unit-vectorarrow_forwardA solid sphere has a uniformly distributed mass of 1.0 * 104 kg and a radius of 1.0 m.What is the magnitude of the gravitational force due to the sphere on a particle of mass m when the particle is located at a distance of (a) 1.5 m and (b) 0.50 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r < 1.0 m from the center of the sphere.arrow_forwardOne dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass ma and particle B has mass 4.00 ma. A third particle C, of mass 73.0 ma, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and Cis zero? Number Unitsarrow_forward
- In Pole to Pole, an early science fiction story by George Griffith, three explorers attempt to travel by capsule through a naturally formed (and, of course, fictional) tunnel directly from the south pole to the north pole. According to the story, as the capsule approaches Earth's center, the gravitational force on the explorers becomes alarmingly large and then, exactly at the center, it suddenly but only momentarily disappears. Then the capsule travels through the second half of the tunnel, to the north pole. With what speed would mail pass through the center of Earth if falling in this tunnel? Ignore air resistance. Mins Number i Unitsarrow_forwardTwo homogeneous spheres one of mass 100 kg and other of mass 11.75 kg attract each with the force of 19.6x10^-7 N when kept with their centres 0.2 m apart. Estimate G.arrow_forwardThree point particles are fixed in position in an xy plane. Two of them, particle A of mass 5 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.579 m at angle = 30°. Particle C, with mass 8 g, is not shown. The net gravitational force acting on particle A due to particles B and Cis 2.02 x 10-¹4 N at an angle of -163.8°. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? B dAB Өarrow_forward
- One dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass mA and particle B has mass 5.00 mA. A third particle C, of mass 88.0 mA, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and C is zero? y A B xarrow_forwardTwo hollow spherical shells are both centered on point C and have masses in the ratio M1/M2=1/4. Point A is outside both shells and point B is between the shells. If the distances from points A and B to the center are in the ratio rA/rB=5, what is the ratio of the gravitational forces FA/FB on a particle placed at A and B?arrow_forwardTwo concentric spherical shells with uniformly distributed masses M1 = 994 kg and M2 = 104 kg are situated as shown in the figure. Find the magnitude of the net gravitational force on a particle of mass m = 38 kg, due to the shells, when the particle is located at radial distance (a) a = 37 m, (b) b = 20 m, and (c) c = 6.1 m. M1 M2 (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning