Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 30P
In Problem 1, what ratio m/M gives the least gravitational potential energy for the system?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Choose the best answer to each of the following. Explain your reasoning. Kepler made a major break from ancient...
Cosmic Perspective Fundamentals
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
A 1500 kg car traveling at 10 m/s suddenly runs out of gas while approaching the valley shown in FIGURE EX10.1...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
DRAW IT The diagram shows a cell in meiosis. (a) Label the appropriate structures with these terms: chromosome ...
Campbell Biology (11th Edition)
7. In Manet’s A Bar at the Folies-Bergere (see Figure Q18.7) the reflection of the barmaid is visible in the mi...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In each situation shown in Figure P8.12, a ball moves from point A to point B. Use the following data to find the change in the gravitational potential energy in each case. You can assume that the radius of the ball is negligible. a. h = 1.35 m, = 25, and m = 0.65 kg b. R = 33.5 m and m = 756 kg c. R = 33.5 m and m = 756 kg FIGURE P8.12 Problems 12, 13, and 14.arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forward(a) Can the kinetic energy of a system be negative? (b) Can the gravitational potential energy of a system be negative? Explain.arrow_forward
- A block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardA block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardA 4.00-kg particle moves from the origin to position , having coordinates x = 5.00 m and y = 5.00 m (Fig. P7.31). One force on the particle is the gravitational force acting in the negative y direction. Using Equation 7.3, calculate the work done by the gravitational force on the particle as it goes from O to along (a) the purple path, (b) the red path, and (c) the blue path, (d) Your results should all be identical. Why? Figure P7.31arrow_forward
- A particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P8.43). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point . (c) its speed at point B, and (d) its kinetic energy and the potential energy when the block is at point . Figure P8.43 Problems 43 and 44.arrow_forwardA 4.00-kg particle moves from the origin to position ©, having coordinates x = 5.00 m and y = 5.00 m (Fig. P6.42). One force on the particle is the gravitational force acting in the negative y direction. Using Equation 6.3, calculate the work done by the gravitational force on the particle as it goes from O to © along (a) the purple path, (b) the red path, and (c) the blue path. (d) Your results should all be identical. Why? Figure P6.42 Problems 42 through 45.arrow_forward
- A block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forwardEstimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forwardAs shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY