Concept explainers
Figure 13-42 shows, not to scale, a cross section through the interior of Earth. Rather than being uniform throughout, Earth is divided into three zones: an outer crust, a mantle, and an inner core. The dimensions of these zones and the masses contained within them are shown on the figure. Earth has a total mass of 5.98 × 1024 kg and a radius of 6370 km. Ignore rotation and assume that Earth is spherical, (a) Calculate ag at the surface. (b) Suppose that a bore hole (the Mohole) is driven to the crust-mantle interface at a depth of 25.0 km; what would be the value of ag at the bottom of the hole? (c) Suppose that Earth were a uniform sphere with the same total mass and size. What would be the value of ag at a depth of 25.0 km? (Precise measurements of ag are sensitive probes of the interior structure of Earth, although results can be clouded by local variations in mass distribution.)
Figure 13-42 Problem 27.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology in Focus (2nd Edition)
College Physics: A Strategic Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
- Please asaparrow_forwardImagine a particular exoplanet covered in an ocean of liquid ethane. At the surface of the ocean, the acceleration of gravity is 7.00 m/s2, and atmospheric pressure is 9.00 ✕ 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid ethane ocean to be 620 kg/m3. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of ethane with radius 2.00 m? (Enter your answer in N.) What is the mass of the ethane? How is it related to density and volume? What is the volume of a cylinder? What is the weight in terms of mass and gravitational acceleration? Note the gravitational acceleration is not 9.80 m/s2 on this planet. N (c) What is the pressure (in Pa) at a depth of 10.0 m in the ethane ocean? Paarrow_forwardImagine a particular exoplanet covered in an ocean of liquid ethane. At the surface of the ocean, the acceleration of gravity is 6.50 m/s2, and atmospheric pressure is 7.20 ✕ 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid ethane ocean to be 620 kg/m3. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? ____N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of ethane with radius 2.00 m? (Enter your answer in N.) ____N (c) What is the pressure (in Pa) at a depth of 10.0 m in the ethane ocean? ____Paarrow_forward
- 9arrow_forwardPlease give a clear and detailed solution.arrow_forward12-16. Estimate the maximum rotation rate of a strengthless asteroid (held together by gravity alone) by setting the rotation speed at the equator equal to the escape velocity. (a) Approximate the asteroid by a spherical body. (Hint: Your answer should depend only on the density of the body, not its size.)arrow_forward
- (a) Calculate Jupiter's mass given the acceleration due to gravity at the north pole is 28.328 m/s² and the radius of Jupiter at the pole is 66,850 km. kg calculated M (b) Compare this with the accepted value of 1.898 x 1027 kg. Mcalculated M. acceptedarrow_forward16-9. Show that the escape velocity from a planet's surface is given by v = (2gR)'/2 where g is the gravitational constant and R the radius of the planet. Given that the gravita- tional constant of the earth is 980 cm/sec² and the radius is 6.4 × 10 cm, calculate the fraction of hydrogen, helium, nitrogen, and oxygen molecules having velocities exceeding the escape velocity.arrow_forward33 3aarrow_forward
- The planet Jupiter has a mass of 1.9 × 1027 kg and a radius of 72,000 km. The Earth, meanwhile, has a mass of 6.0 × 1024 kg and a radius of 6,400 km. What is the volume of Earth in m^3?arrow_forwardJupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 kmkm (or even higher) above the surface. Io has a mass of 8.93×10^22kg and a radius of 1821 km. How high would this material go on earth if it were ejected with the same speed as on Io? (RE = 6370 km, m_E=5.96×10^24kg) Express your answer with the appropriate units.arrow_forwardConsider a solid sphere (e.g., a planet) with mass M and radius R. The volume mass density for this planet is given by r2 p(r) = for rR where A is a constant with the units of kg/m'.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill