Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 83P
To determine
To find:
a) The period of the orbit
b) The speed of the shuttle craft
c) The speed of the shuttle craft after the thruster is fired
d) The kinetic energy after the thruster is fired
e) The gravitational potential energy after the thruster is fired
f) The mechanical energy of the shuttle craft after the thruster is fired
g) The semi major axis of the elliptical orbit after the thruster is fired
h) The difference between the period of the original circular orbit and the new elliptical orbit
i) The orbit which has a smaller period
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Jupiter’s moon Io has active volcanoes (in fact, it is the most volcanically active object in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93 * 10^22 kg and a radius of 1821 km. For this calculation, ignore any variation in gravity over the 500 km range of the debris. How high would this material go on earth if it were ejected with the same speed as on Io?
You are on a space station, in a circular orbit h = 500 km above the surface of the Earth. You complete your tasks several days early and must wait for the next mission from the surface to bring you home. After days of boredom, you decide to play some golf. Walking on the space station surface with magnetic shoes, you tee up a golf ball. You hit it with all of your might, sending it off with speed υrel, relative to the space station, in a direction parallel to the velocity vector of the space station at the moment the ball is hit. You notice that you then orbit the Earth exactly n = 2.00 times and you reach up and catch the golf ball as it returns to the space station. With what speed υrel was the golf ball hit?
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of
5.34 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore
atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your
calculations.)
m/s
(b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a
"gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is
1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from
the Earth's surface at a speed of 4.10 x 104 m/s relative to the Sun, what is the increase in speed needed from the
gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume that the Earth and
the point on Jupiter's orbit lie along the same…
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardA rocket is fired straight up, and it burns out at an altitude of 250 km when traveling at 6.00 km/s (at this point the rocket is too far from the surface of the earth to be affected by the earth gravitational pull). What maximum distance from the earth surface does the rocket travel before falling back to the earth? The radius of the earth is RE = 6.37 x 106 meters, the mass of the earth is ME = 5.98 x 1024 kg and G = 6.67 x 10-11 N∙m2/kg2arrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.48 x 10 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 10 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar…arrow_forward
- In a shuttle craft of mass m = 4500 kg, Captain Janeway orbits a planet of mass M = 9.70 x 1025 kg, in a circular orbit of radius r = 4.70 x 107 m. What are (a) the period of the orbit and (b) the speed of the shuttle craft? Janeway briefly fires a forward-pointing thruster, reducing her speed by 2.40%. Just then, what are (c) the speed, (d) the kinetic energy, (e) the gravitational potential energy, and (f) the mechanical energy of the shuttle craft? (g) What is the semimajor axis of the elliptical orbit now taken by the craft? (h) What is the difference between the period of the original circular orbit and that of the new elliptical orbit? (i) Which orbit has the smaller period? (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units Units i (e) Number Units i (f) Number Units i (g) Number MacBook Proarrow_forwardA satellite is orbiting around a planet in a circular orbit. The radius of the orbit, measured from the center of the planet is R = 4.1 × 107 m. The mass of the planet is M = 8.6 × 1024 kg. Express the magnitude of the centripal accelaration ac of the satellite in terms of the speed of the satellite v, and R. Express the speed of v in terms of G,M, and R.arrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5.0 × 1010 m (inside the orbit of Mercury), at which point its speed is 9.6 x 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = i m/sarrow_forward
- One model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M= 4.1 * 1024 kg and R = 6.0 *106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet?arrow_forwardProblem 7: A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.04 x 10“ m/s. The mass of the planet is M = 5.96 × 1024 kg. The mass of the satellite is m = 2.2 x 10° kg. Varrow_forwardProblem 33: Planet 1 has mass 3M and radius R, while Planet 2 has mass 4M and radius 2R. They are separated by center-to-center distance 8R. A rock is placed halfway between their centers at point O. It is released from rest, and you may ignore any motion of the planets. Part (b) Calculate the magnitude of the acceleration of the rock (in m/s2) the moment it is released, using M = 59 × 1025 kg and R = 33 × 108 km. Part (d) Calculate the speed the rock crashes into the planet in m/s.arrow_forward
- One model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M = 4.07 × 1024 kg and R = 5.79 x 106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number i Units (b) Number i Unitsarrow_forwardTwo spherical asteroids have the same radius R. Asteroid 1 has mass M and asteroid 2 has mass 2M. The two asteroids are released from rest with distance 10R between their centers. What is the speed of each asteroid just before they collide?arrow_forwardThe escape speed of a projectile on the earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning