Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 57P
To determine
To find:
The period of revolution of the binary-star system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a certain binary-star system, each star has the same mass as our Sun, and they revolve about their center of mass. The distance between them is the same as the distance between Earth and the Sun.What is their period of revolution in years?
In a certain binary-star system, each star has the same mass which is 9.0 times of that of the Sun, and they revolve about their center of mass. The distance between them is the 7.9 times the distance between Earth and the Sun. What is their period of revolution in years?
A spherical asteroid rotates around an axis through its Center of Mass CM. Over time, it accretes space dust (of the same density), whose initial velocity with respect to the asteroid’s CM is zero. The asteroid grows from mass m0 to m. How does the period of its rotation change with m? If the asteroid doubles in mass, how and by what factor does its period of rotation change?
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forwardTwo stars of masses M and m, separated by a distance d, revolve in circular orbits about their center of mass (Fig. P11.50). Show that each star has a period given by T2=42d3G(M+m) Proceed as follows: Apply Newtons second law to each star. Note that the center-of-mass condition requires that Mr2 = mr1, where r1 + r2 = d.arrow_forward
- Astronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forwardA distant exo-planet has a mass that is 100 times bigger than the Earth's, and orbits at a distance 2 times as far from its star as the Earth does from our Sun. The star has the same mass as our Sun. What is the velocity of the star about the center of mass of the exo-planet/star system? Mass of Earth = 6.0 x 1024 kg. Distance of Earth from Sun = 150 x 109 m. Mass of Sun = 2.0 x 1030 kg.arrow_forwardA meteor of mass m is approaching earth as shown on the sketch. The distance h on the sketch below is called the impact parameter. The radius of the earth is Re 6400km . The 6x1024 kg mass of the earth is me = Suppose the meteor has an initial speed of vo = 30km/s. Assume that the meteor started very far away from the earth. Suppose the meteor just passes earth at a distance of 2.5 Re from the earth's center. You may ignore all other gravitational forces except the earth. Find the moment arm h in km (called the impact parameter). G -11 6.673x10-"Nm²kg %3D meteor very far away Vo h impact parameter planetarrow_forward
- Stars and black holes in a binary system orbit each other in circular orbits of radius r1 and r2 around their center of mass. Its mass is equal to 1.98x1030 kg, and its speed is 5.36 times faster than our Sun's. Furthermore, the visible star has an orbital period of 30 hours.(a) What is the apparent star's orbital radius, r1, in units of radii?In terms of MS, determine the black hole's mass m2. In the equation x3 = x(5a+5a)2, where an is the constant, x = 28a is a root.arrow_forwardA certain triple-star system consists of two stars, each of mass m = 7.2×1030 kg, revolving in the same circular orbit of radius r = 6.4×10¹¹ m about a central star of mass M = 7.9×10³3 kg (the figure). The two orbiting stars are always at opposite ends of a diameter of the orbit. Calculate the period of revolution of the stars. Number i Units m M marrow_forwardA binary star consist of two stars of the same mass m revolving in a circle of radius R about their common centre of mass. Suppose that a meteorite passes through the centre of mass of the binary star in a direction perpendicular to the orbital plane. What is the minimum speed that the meteorite must have at the centre of mass in order for it to escape from the gravitational attraction of the binary star? ANSW: 4Gm R warrow_forward
- Two spherical asteroids have the same radius R. Asteroid 1 has mass M and asteroid 2 has mass 2M. The two asteroids are released from rest with distance 10R between their centers. What is the speed of each asteroid just before they collide?arrow_forwardA binary-star system contains a visible star and a black hole moving around their center of mass in circular orbits with radii r1 and r2 , respectively. The visible star has an orbital speed of v=5.36x105 ms-1 and a mass of m1 =5Ms ,where Ms= 1.98x1030kg is the mass of our Sun. Moreover, the orbital period of the visible star is T = 30 hours.(a) What is the radius r1 of the orbit of the visible star?(b) Calculate the mass m2 of the black hole in terms of MS . [Hint: One root of the equation x3 = 20a(5a+x)2 , where a is a constant, is x = 28a .]arrow_forwardWhite dwarf stars are produced by the collapse of regular stars, such as our sun, toward the end of their normal life. Suppose a star initially has the same mass as our sun and the same radius as that of the sun. Suppose further that it collapses into a white dwarf with a radius of 5000km. If the initial period of the star is the same 27 day period of our sun, what is the resulting period of the white dwarf?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning