Concept explainers
A solid sphere has a uniformly distributed mass of 1.0 × 104 kg and a radius of 1.0 m. What is the magnitude of the gravitational force due to the sphere on a particle of mass m when the particle is located at a distance of (a) 1.5 m and (b) 0.50 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r ≤ 1.0 m from the center of the sphere.
Trending nowThis is a popular solution!
Chapter 13 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
Fundamentals Of Thermodynamics
College Physics: A Strategic Approach (3rd Edition)
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardConsider the Earth and the Moon as a two-particle system. a. Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon.) b. Plot the scalar component of g as a function of distance from the center of the Earth.arrow_forward
- (a) Given that the period of the Moons orbit about the Earth is 27.32 days and the nearly constant distance between the center of the Earth and the center of the Moon is 3.84 108 m, use Equation 13.11 to calculate the mass of the Earth. (b) Why is the value you calculate a bit too large?arrow_forwardA spherical shell has uniform density of 4.6 kg/m³. It has an inner radius 2.5 m and outer radius 4.2 m. The magnitude of the gravitational force exerted on the shell by a point mass particle of mass 9.5 kg a distance 2.1 m from the center, is 6.5 x 10 ⁹ N 24 x 10 N 3.2 x 10¹ N O 1.1 x 10 N ONarrow_forwardOne model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M = 4.07 × 1024 kg and R = 5.79 x 106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number i Units (b) Number i Unitsarrow_forward
- Three point particles are fixed in place in an xy plane. Particle A has mass mA = 5 g, particle B has mass 2.00 mA, and particle C has mass 3.00 mA. A fourth particle D, with mass 4.00 mA, is to be placed near the other three particles. What (a) x coordinate and (b) y coordinate should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero. please write the step by step process on paper.arrow_forwardOne model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M= 4.1 * 1024 kg and R = 6.0 *106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet?arrow_forwardPlease help me on number (C). I have to put a decimal numbersarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University