Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 21P
ILW Certain neutron stars (extremely dense stars) are believed to be rotating at about l rev/s. If such a star has a radius of 20 km: what must be its minimum mass so that material on its surface remains in place during the rapid rotation?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At what rate, in watts, is the Earth losing rotational kinetic energy due to tidal braking? [Hint:The rotational kinetic energy of the earth,Erot=0.5I⊕ω2, where ω= 2π/P is the rotational angular speed,Pbeing the Earth’s rotationalperiod. The moment of inertia of the Earth, I⊕=(2/5)M⊕R⊕2.]
Certain neutron stars (extremely dense stars) are believed to be rotating at about 1.9 rev/s. If such a star has a radius of 23 km, what must be its minimum mass so that material on its surface remains in place during the rapid rotation?
The evolution of a star depends on its size. If a star is sufficiently large, the gravity forcesholding it together may be large enough to collapse it into a very dense object composed mostlyof neutrons. The density of such a neutron star is about 1014 times that of the earth. Suppose thata star initially had a radius about that of our sun, 7 × 108 km, and that it rotated once every 26 days,as our sun does. What would be the period of rotation (the time for 1 rev) if the star collapsed to aradius of 15 km?
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A rigid container has 2 kg of oxygen gas at l00 kPa and 1200 K that is heated to 1400 K. Solve for the heat tra...
Fundamentals Of Thermodynamics
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D Community 2 contains 1...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Sun’s mass is 2.01030kg , its radius is 7.0105km , and it has a rotational period of approximately 28 days. If the Sun should collapse into a white dwarf of radius 3.5103km , what would its period be if no mass were ejected and a sphere of uniform density can model the Sun both before and after?arrow_forwardJupiter rotates about its axis once every 9 hours 55 minutes. a. What is Jupiter's angular speed of rotation? b. What is the effect of this rapid rotation on the shape of theplanet?arrow_forwardNeptune has a mass of 1.01026kg and is 4.5109km from the Sun with an orbital period of 165 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 1011km and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the outer edges of the primordial disk?arrow_forward
- An Earth satellite has its apogee at 2500 km above the surface of Earth and perigee at 500 km above the surface of Earth. At apogee its speed is 730 m/s. What is its speed at perigee? Earth’s radius is 6370 km (see below).arrow_forwardCertain neutron stars (extremely dense stars) are believed to be rotating at about 1.4 rev/s. If such a star has a radius of 22738 km. For the material on this neutron star's surface to remain in place during the rapid rotation, its minimum mass should be ?kgarrow_forwardThe rate at which a nebular cloud rotates increases as the cloud collapses to form systems of stars and planets. Consider a small segment of a nebular cloud with a mass m of 1.9 x 102' kg, tangential velocity vinitial equal to 6.8 km s located at an orbital distance rinitial = 2.5 x 104 km. After the cloud collapses, the same small segment is located at an orbital distance rfinal = 3.2 x 10³ km. Calculate the change of the rotational velocity, Aw, for the cloud segment, assuming perfectly circular orbits. Perform your work and report your solution using two significant figures. Δω rad s-1arrow_forward
- Certain neutron stars (extremely dense stars) are believed to be rotating at about 1.1 rev/s. If such a star has a radius of30 km, what must be its minimum mass so that material on its surface remains in place during the rapid rotation? Number Unitsarrow_forwardAn artificial satellite is launched from -6000™ 12742 *3000* point B on the equator by its carrier rocket and inserted into an elliptical orbit with perigee altitude of 3000 km. If the apogee altitude is to be 6000 km, compute a) The necessary perigee velocity vp and the corresponding apogee velocity v4. b) The velocity at point C where the altitude of VA satellite is 3500 km. 3500 c) The period t for a complete orbit. 2)arrow_forwardAn exotic planet Vogsphere is known to have a mass that is 1/81 that of the Earth and a radius 0.25 that of the Earth. Astrophysicist Trillian built a rocket and decided to leave the planet and never to return. Given that the escape speed from the Earth is 11.2 km/s, with what speed must Trillian achieve his goal?arrow_forward
- A space vehicle is in a circular orbit with a 1400-mi radius around the moon. To transfer to a smaller orbit with a 1300-mi radius, the vehicle is first placed in an elliptic path AB by reducing its speed by 86 ft/s as it passes through A. Knowing that the mass of the moon is 5.03 x 10 21 Ib.s2/ft, determine (a) the speed of the vehicle as it approaches B on the elliptic path, (b) the amount by which its speed should be reduced as it approaches B to insert it into the smaller circular orbit.arrow_forwardThe radius Rhand mass Mh of a black hole are related by R₁ = 2GM₁/c², where c is the speed of light. Assume that the gravitational acceleration as of an object at a distance r= 1.001Rh from the center of a black hole is given by ag = GM/r² (it is, for large black holes). (a) In terms of Mh, find ag at ro. (b) Does sag at ro increase or decrease as M₁ increases? (c) What is ag at ro for a very large black hole whose mass is 1.54 × 10¹3 times the solar mass of 1.99 × 10³⁰ kg? (d) If an astronaut with a height of 1.66 m is at råwith her feet toward this black hole, what is the difference in gravitational acceleration between her head and her feet ahead-afeet? (e) Is the tendency to stretch the astronaut severe?arrow_forwardPulsars. When a star with a mass at least ten times that of the Sun explodes outward in a supernova, its core can be collapsed into a pulsar, which is a spinning star that emits electromagnetic radiation (radio waves or light) in two tight bears in opposite directions. If a beam sweeps across Earth during the rotation, we can detect repeated pulses of the radiation, one per revolution. (a) The first pulsar was discovered by Jocelyn Bell Burnell and Antony Hewish in 1967; its pulses are separated by 1.3373 s. What is its angular speed in revolutions per second? (b) To date, the fastest spinning pulsar has an angular speed of 716 rev/s. What is the separation of its detected pulses in milliseconds? (a) Number (b) Number Hint 1345.98 eTextbook and Media Save for Later 2510 Units Units revis ms Attempts: 1 of 5 used Submit Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY