Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 5Q
To determine
To rank:
The situations according to the magnitude of the gravitational force on particle P due to the shell, greatest first.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Fig. 13-32, a square of edge length mị
20.0 cm is formed by four spheres of masses
m; = 5.00 g, m, = 3.00 g, m3 = 1.00 g, and
m4 = 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass m, = 2.50 g?
•7 One dimension. In Fig. 13-33, two
point particles are fixed on an x axis sepa- mg
roted bu dictonged Porticle 4 hor morc m
•6
A solid copper sphere of mass M and radius R has a cavity of radius ½ R. Inside the cavity a particle of mass m placed a distance d > R from the center of the sphere along the line connecting the centers of the sphere and the cavity. Find the gravitational force on m.
(c) Two uniform stars are separated by 2.36 × 1016 m. The star on the left has a mass of 5.33 × 1028 kg and the star on the right has a mass of 2.76 × 1030 kg. Determine the magnitude of the gravitational force on the star on the right.
(d)Consider the two stars from part (c) above. Let the dotted line joining their centers be on the x-axis with the origin at the center of the star on the left. Determine the location of the center of mass of the two-star system.
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardA spherical shell of inner diameter R and outer diameter 3 R has a uniform density ρ. What is the magnitude of the gravitational acceleration a distance R from the center of the spherical shell?arrow_forward
- One model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M = 4.07 × 1024 kg and R = 5.79 x 106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number i Units (b) Number i Unitsarrow_forwardA solid sphere has a uniformly distributed mass of 1.0 * 104 kg and a radius of 1.0 m.What is the magnitude of the gravitational force due to the sphere on a particle of mass m when the particle is located at a distance of (a) 1.5 m and (b) 0.50 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r < 1.0 m from the center of the sphere.arrow_forwardA sphere of uniform density p has within it a spherical cavity whose centre is a distance a from the centre of the sphere. Show that the gravitational field within the cavity is uniform and determine its magnitude and direction.arrow_forward
- After the Sun exhausts its nuclear fuel, its ultimate fate may be to collapse to a white dwarf state. In this state, it would have approximately the same mass as it has now, but its radius would be equal to the radius of Earth. Calculate (a) the average density of the white dwarf, (b) the surface free-fall acceleration, and (c) the gravitational potential energy associated with a 1.00-kg object at the surface of the white dwarf.arrow_forwardA uniform solid sphere of radius R = 6400 Km produces a gravitational acceleration of a = 10m/s2 on its surface. Find the mass and density of that sphere. Plot the gravitational acceleration as a function of distance from the center of the sphere, both inside and outside the sphere.arrow_forward7 of 16 (a) Number 0.37/1 A solid sphere of uniform density has a mass of 9.3 × 104 kg and a radius of 3.4 m. What is the magnitude of the gravitational force due to the sphere on a particle of mass 7.5 kg located at a distance of (a) 12 m and (b) 2.7 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r ≤ 3.4 m from the center of the sphere. 3.23 (b) Number i 1.4 Units Units E (c) |Fon m = k·r, where k = i N N > <arrow_forward
- Four uniform spheres, with masses ma 65 kg, MB = 10 kg, mc 190 kg, and mp notation, what is the net gravitational force on sphere B due to the other spheres? - = 45 kg, have (x, y) coordinates of (0, 50 cm), (0, 0), (−80 cm, 0), and (40 cm, 0), respectively. In unit-vectorarrow_forwarda) If the legendary apple of Newton could be released from rest at a height of 4.2 m from the surface of a neutron star with a mass 2.2 times that of our sun (whose mass is 1.99 x 1030 kg) and a radius of 23 km, what would be the apple's speed when it reached the surface of the star? (b) If the apple could rest on the surface of the star, what would be the difference between the gravitational acceleration at the top and at the bottom of the apple? Take the apple to be a sphere with a radius of 3.4 cm.arrow_forwardChapter 11 67. A nonuniform thin rod of length L lies on the x axis. One end of the rod is at the origin, and the other end is at x=L. the rod's mass per unit length λ varies as λ=Cx, where C is a constant.(Thus, an element of the rod has mass dm=λ dx.) (a) Determine the total mass of the rod. (b)Determine the gravitational field due to the rod on the x axis at x=x0, there x0 >L.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University