Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 85P
To determine
To find:
The maximum height achieved by the projectile.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?escvesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=4.10×106 g/m3ρ=4.10×106 g/m3 and volume ?=1.25×1012 m3V=1.25×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10−11 N·m2/kg2G=6.67×10−11 N·m2/kg2 .
An uncrewed mission to the nearest star, Proxima Centauri, is launched from the Earth's surface as a projectile with an initial speed of 43.1 km/s, just enough for the spacecraft to escape the Earth's gravity and leave the solar system. Ignoring air resistance and the Earth's rotation, what is the speed of the spacecraft when it is more than halfway to the star? Assume we are ignoring the effect of the Sun on the spacecraft.
In 2014, the Rosetta space probe reached the comet Churyumov– Gerasimenko. Although the comet’s core is actually far from spherical, in this problem we’ll model it as a sphere with a mass of 1.0 x 1013 kg and a radius of 1.6 km. If a rock were dropped from a height of 1.0 m above the comet’s surface, how long would it take to hit the surface?
Chapter 13 Solutions
Fundamentals of Physics Extended
Ch. 13 - In Fig. 13-21, a central particle of mass M is...Ch. 13 - Prob. 2QCh. 13 - In Fig. 13-23, a central particle is surrounded by...Ch. 13 - In Fig. 13-24, two particles, of masses m and 2m,...Ch. 13 - Prob. 5QCh. 13 - In Fig. 13-26, three particles are fixed in place....Ch. 13 - Rank the four systems of equal- mass particles...Ch. 13 - Figure 13-27 gives the gravitational acceleration...Ch. 13 - Figure 13-28 shows three particles initially fixed...Ch. 13 - Figure 13-29 shows six paths by which a rocket...
Ch. 13 - Figure 13-30 shows three uniform spherical planets...Ch. 13 - In Fig. 13-31, a particle of mass m which is not...Ch. 13 - ILW A mass M is split into two parts, m and M m,...Ch. 13 - Moon effect. Some people believe that the Moon...Ch. 13 - Prob. 3PCh. 13 - The Sun and Earth each exert a gravitational force...Ch. 13 - Miniature black holes. Left over from the big-bang...Ch. 13 - GO In Fig. 13-32, a square of edge length 20.0 cm...Ch. 13 - One dimension. In Fig. 13-33, two point particles...Ch. 13 - In Fig. 13-34, three 5.00 kg spheres are located...Ch. 13 - SSM WWW We want to position a space probe along a...Ch. 13 - Prob. 10PCh. 13 - As seen in Fig. 13-36, two spheres of mass m and a...Ch. 13 - GO In Fig. 13-37a, particle A is fixed in place at...Ch. 13 - Figure 13-38 shows a spherical hollow inside a...Ch. 13 - Prob. 14PCh. 13 - GO Three dimensions. Three point particles are...Ch. 13 - GO In Fig. 13-40, a particle of mass m1 = 0.67 kg...Ch. 13 - a What will an object weigh on the Moons surface...Ch. 13 - Mountain pull. A large mountain can slightly...Ch. 13 - SSM At what altitude above Earths surface would...Ch. 13 - Mile-high building. In 1956, Frank Lloyd Wright...Ch. 13 - ILW Certain neutron stars extremely dense stars...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Two concentric spherical shells with uniformly...Ch. 13 - A solid sphere has a uniformly distributed mass of...Ch. 13 - Prob. 26PCh. 13 - Figure 13-42 shows, not to scale, a cross section...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - In Problem 1, what ratio m/M gives the least...Ch. 13 - SSM The mean diameters of Mars and Earth are 6.9 ...Ch. 13 - a What is the gravitational potential energy of...Ch. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - GO Figure 13-44 shows four particles, each of mass...Ch. 13 - Zero, a hypothetical planet, has a mass of 5.0 ...Ch. 13 - GO The three spheres in Fig, 13-45, with masses mA...Ch. 13 - In deep space, sphere A of mass 20 kg is located...Ch. 13 - Prob. 39PCh. 13 - A projectile is shot directly away from Earths...Ch. 13 - SSM Two neutron stars arc separated by a distance...Ch. 13 - GO Figure 13-46a shows a particle A that can he...Ch. 13 - a What linear speed must an Earth satellite have...Ch. 13 - Prob. 44PCh. 13 - The Martian satellite Photos travels in an...Ch. 13 - The first known collision between space debris and...Ch. 13 - Prob. 47PCh. 13 - The mean distance of Mars from the Sun is 1.52...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - The Suns center is at one focus of Earths orbit....Ch. 13 - A 20 kg satellite has a circular orbit with a...Ch. 13 - Prob. 54PCh. 13 - In 1610, Galileo used his telescope to discover...Ch. 13 - In 1993 the spacecraft Galileo sent an image Fig....Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Three identical stars of mass M form an...Ch. 13 - In Fig. 13-50, two satellites, A and B, both of...Ch. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - SSM WWW An asteroid, whose mass is 2.0 10-4 times...Ch. 13 - A satellite orbits a planet of unknown mass in a...Ch. 13 - A Satellite is in a circular Earth orbit of radius...Ch. 13 - One way to attack a satellite in Earth orbit is to...Ch. 13 - Prob. 67PCh. 13 - GO Two small spaceships, each with mass m = 2000...Ch. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Several planets Jupiter. Saturn, Uranus are...Ch. 13 - Prob. 72PCh. 13 - Figure 13-53 is a graph of the kinetic energy K of...Ch. 13 - The mysterious visitor that appears in the...Ch. 13 - ILW The masses and coordinates of three spheres...Ch. 13 - SSM A very early, simple satellite consisted of an...Ch. 13 - GO Four uniform spheres, with masses mA = 40 kg,...Ch. 13 - a In Problem 77, remove sphere A and calculate the...Ch. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - A 50 kg satellite circles planet Cruton every 6.0...Ch. 13 - Prob. 91PCh. 13 - A 150.0 kg rocket moving radially outward from...Ch. 13 - Prob. 93PCh. 13 - Two 20 kg spheres are fixed in place on a y axis,...Ch. 13 - Sphere A with mass 80 kg is located at the origin...Ch. 13 - In his 1865 science fiction novel From the Earth...Ch. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - A thin rod with mass M = 5.00 kg is bent in a...Ch. 13 - In Fig. 13-57, identical blocks with identical...Ch. 13 - A spaceship is on a straight-line path between...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density p 3.06 x 106 g/m³ and volume V = 3.32 x 1012 m³. Recall that the universal gravitational constant is G : 6.67 x 10-11 N-m²/kg².arrow_forwardJupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93×1022kg and a radius of 1821 km. For this calculation, ignore any variation in gravity over the 500 km range of the debris. How high would this material go on earth if it were ejected with the same speed as on Io?arrow_forwardA rocket is projected upward from the earth's surface (r = RE) with an initial speed v0 that carries it to a distance r = 1.6 RE from the center of the earth. What is the launch speed v0? Assume that air friction can be ignored.arrow_forward
- If a projectile is launched vertically from the Earth with a speed equal to the escape speed, how high above the Earth's surface is it when its speed is one-fifth the escape speed?arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?esc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=2.93×106 g/m3 and volume ?=1.94×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10-11 N·m2/kg2 .vesc = ? m/sarrow_forwardA new planet has a mass of 2.0x10^24 kg, a radius of 4.5x10^6m, and no atmosphere. A 100 kg space probe is to be launched vertically from its surface. If the probe is launched with an initial kinetic energy of 6.0 x 10^8 J, the what will be its velocity when it reaches 5.2x10^6m from the center of the new planet?arrow_forward
- The escape speed of a projectile on the earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets.arrow_forward10:52 Y .. N ll 80% horizontal. The rock strikes the ground a horizontal distance of 25 m from the base of the building. Assume that the ground is level and that the side of the building is vertical, How tall is the building? 4. An airplane flies horizontally with a speed of 250 m/s at an altitude of 500 m. Assume that the ground is level. At what horizontal distance from a target must the pilot release a bomb so as to hit the target? 5. A car is moving at a constant speed of 4 m/s in a circular track of diameter 6 m. (i) calculate the magnitude of the centripetal acceleration, and (ii) if its speed is also increasing at the rate of 5 meters per second per second, what is the tangential acceleration. 6. At an instant when a 4.0-kg object has an acceleration equal to (5i + 3]) m/s?, one of the two forces acting on the object is known to be (12i + 22j) N. Determine the other force acting on the object. 7. If F = 4.0 N and m = 2.0 kg, what is the magnitude a of the acceleration for the…arrow_forwardYou are on a space station, in a circular orbit h = 500 km above the surface of the Earth. You complete your tasks several days early and must wait for the next mission from the surface to bring you home. After days of boredom, you decide to play some golf. Walking on the space station surface with magnetic shoes, you tee up a golf ball. You hit it with all of your might, sending it off with speed υrel, relative to the space station, in a direction parallel to the velocity vector of the space station at the moment the ball is hit. You notice that you then orbit the Earth exactly n = 2.00 times and you reach up and catch the golf ball as it returns to the space station. With what speed υrel was the golf ball hit?arrow_forward
- A projectile is shot straight up from the earth's surface at a speed of 1.00×104 km/hr .How high does it go?arrow_forwardWhile standing on the surface of a spherical asteriod of mass M and radius R., and astronaut thows a small rock straight upward away from the center. What is the minimum speed she must give to the rock to reach a height h above the surface. Assume that h is not small compared to R. The asteriod has no atmosphere and take the rock's mass to be small compared to M.arrow_forwardAPPENDIX J Orbit, A Planetary Orbit Code Orbit is a computer program designed to calculate the position of a planet orbiting a massive star (or, alternatively, the orbit of the reduced mass about the center of mass of the system). The program is based on Kepler's laws of planetary motion as derived in Chapter 2. References to the relevant equations are given in the comment sections of the code. The user is asked to enter the mass of the parent star (in solar masses), the semimajor axis of the orbit (in AU), and the eccentricity of the orbit. The user is also asked to enter the number of time steps desired for the calculation (perhaps 1000 to 100,000) and the frequency with which the time steps are to be printed to the output file (0rbit.txt). If 1000 time steps are specified with a frequency of 10, then 100 evenly spaced (in time) time steps will be printed. The output file can be imported directly into a graphics or spreadsheet program in order to generate a graph of the orbit. Note…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning