Concept explainers
Interpretation: To contrast, the oxidation of glucose to
Concept introduction: Adenosine triphosphate (ATP) is a molecule that is defined as the energy currency of life and provides energy to carry out the
The net yield of ATP for the complete oxidation of one molecule of glucose is obtained from the assembled ATP production from the glycolysis process, aerobic oxidation of pyruvate to

Answer to Problem 13.54EP
When a glucose molecule is converted into ethanol, two ATP molecules are generated. The complete oxidation of glucose molecule produces
Explanation of Solution
In the glycolysis metabolic pathway, a glucose molecule breaks down and is converted into two pyruvate molecules. In this reaction, two ATP molecules are generated. The net overall equation for the glycolysis process is as follows:
The end product in the glycolysis is pyruvate. The process of ethanol fermentation takes place in two steps. In step 1, the pyruvate molecule is converted to acetaldehyde by pyruvate decarboxylase enzymes. In step 2, acetaldehyde is reduced to ethanol by alcohol dehydrogenase enzymes. The ethanol fermentation equation is as follows:
Combine the reaction for the conversion of pyruvate to ethanol with the net overall reaction for glycolysis to obtain an overall reaction for the ethanol production as follows:
The table for the production of ATP in the glycolysis process is as follows:
The table for the production of ATP in the aerobic oxidation of pyruvate to
The overall reaction equation for the conversion of pyruvate to
The table for the production of ATP in the citric acid cycle is as follows:
The net overall equation for the Citric acid cycle is as follows:
The table for the production of ATP in the electron transport chain and oxidative phosphorylation is as follows:
NADH,
The net yield of ATP is 30. 30 molecules of ATP are produced by the complete oxidation of one molecule of glucose.
An overall reaction for the production of ethanol is obtained by the combination of the conversion reaction of pyruvate to ethanol with the net overall reaction for glycolysis. Therefore, a net gain of two ATP molecules occurs when one glucose molecule is converted to ethanol.
A net gain of two ATP molecules occurs when one glucose molecule is converted to two pyruvate molecules through the glycolysis pathway. In the citric acid cycle, a net gain of two ATP molecules occurs when two
Want to see more full solutions like this?
Chapter 13 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Steps and explanation please. Add how to solve or target similar problems.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning



