Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
Question
Book Icon
Chapter 12.2, Problem 7PSB

a.

To determine

To calculate: The perimeter of the base ABCD .

a.

Expert Solution
Check Mark

Answer to Problem 7PSB

The perimeter of base ABCD is 72 .

Explanation of Solution

Given information:

Side EF = 12,

Side EB = 15.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  1

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  2

Side FB can be calculated by applying Pythagoras Theorem.

In right angle triangle EFB , we get

  (EF)2+(FB)2=(EB)2(12)2+(FB)2=(15)2(FB)2+144=225(FB)2=225144(FB)2=81FB=81=9

Base AB=2×FB=2×9=18

In square all sides are equal.

Perimeter =4×AB

Perimeter =4×18

Perimeter =72

b.

To determine

To find: The lateral area of pyramid EABCD .

b.

Expert Solution
Check Mark

Answer to Problem 7PSB

The lateral area of pyramid EABCD is 432 .

Explanation of Solution

Given information:

Side EF = 12,

Side EB = 15.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  3

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  4

Side FB can be calculated by applying Pythagoras Theorem.

In right angle triangle EFB , we get

  (EF)2+(FB)2=(EB)2(12)2+(FB)2=(15)2(FB)2+144=225(FB)2=225144(FB)2=81FB=81=9

Base AB=2×FB=2×9=18

Area of triangle:

  A=12×AB×EFA=12×18×12A=108

Lateral Area = 4 × Area of triangle

Lateral Area =4×108=432

c.

To determine

To calculate: The area of base ABCD .

c.

Expert Solution
Check Mark

Answer to Problem 7PSB

The area of base ABCD is 324 .

Explanation of Solution

Given information:

Side EF = 12,

Side EB = 15.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  5

In right angle triangle,

  a2+b2c2

Area of square: A=s2

s = side of square

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  6

Side FB can be calculated by applying Pythagoras Theorem.

In right angle triangle EFB , we get

  (EF)2+(FB)2=(EB)2(12)2+(FB)2=(15)2(FB)2+144=225(FB)2=225144(FB)2=81FB=81=9

Base AB=2×FB=2×9=18

Area of base ABCD =(18)2=324

d.

To determine

To calculate: The total area of pyramid EABCD .

d.

Expert Solution
Check Mark

Answer to Problem 7PSB

The total area of EABCD is 756 .

Explanation of Solution

Given information:

Side EF = 12,

Side EB = 15.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  7

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle Area of square: A=s2

s = side of square

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 7PSB , additional homework tip  8

Side FB can be calculated by applying Pythagoras Theorem.

In right angle triangle EFB , we get

  (EF)2+(FB)2=(EB)2(12)2+(FB)2=(15)2(FB)2+144=225(FB)2=225144(FB)2=81FB=81=9

Base AB=2×FB=2×9=18

Area of triangle:

  A=12×AB×EFA=12×18×12A=108

Lateral Area = 4 × Area of triangle

Lateral Area =4×108=432

Area of base ABCD =(18)2=324

Total Area = Lateral Area + Area of base ABCD

Total Area =432+324

Total Area =756

Chapter 12 Solutions

Geometry For Enjoyment And Challenge

Ch. 12.1 - Prob. 11PSCCh. 12.2 - Prob. 1PSACh. 12.2 - Prob. 2PSACh. 12.2 - Prob. 3PSACh. 12.2 - Prob. 4PSACh. 12.2 - Prob. 5PSACh. 12.2 - Prob. 6PSBCh. 12.2 - Prob. 7PSBCh. 12.2 - Prob. 8PSBCh. 12.2 - Prob. 9PSBCh. 12.2 - Prob. 10PSCCh. 12.2 - Prob. 11PSCCh. 12.2 - Prob. 12PSCCh. 12.2 - Prob. 13PSCCh. 12.3 - Prob. 1PSACh. 12.3 - Prob. 2PSACh. 12.3 - Prob. 3PSACh. 12.3 - Prob. 4PSACh. 12.3 - Prob. 5PSACh. 12.3 - Prob. 6PSBCh. 12.3 - Prob. 7PSBCh. 12.3 - Prob. 8PSBCh. 12.3 - Prob. 9PSBCh. 12.3 - Prob. 10PSBCh. 12.3 - Prob. 11PSBCh. 12.3 - Prob. 12PSCCh. 12.3 - Prob. 13PSCCh. 12.3 - Prob. 14PSCCh. 12.4 - Prob. 1PSACh. 12.4 - Prob. 2PSACh. 12.4 - Prob. 3PSACh. 12.4 - Prob. 4PSACh. 12.4 - Prob. 5PSACh. 12.4 - Prob. 6PSACh. 12.4 - Prob. 7PSBCh. 12.4 - Prob. 8PSBCh. 12.4 - Prob. 9PSBCh. 12.4 - Prob. 10PSBCh. 12.4 - Prob. 11PSBCh. 12.4 - Prob. 12PSBCh. 12.4 - Prob. 13PSBCh. 12.4 - Prob. 14PSBCh. 12.4 - Prob. 15PSBCh. 12.4 - Prob. 16PSBCh. 12.4 - Prob. 17PSBCh. 12.4 - Prob. 18PSBCh. 12.4 - Prob. 19PSCCh. 12.4 - Prob. 20PSCCh. 12.4 - Prob. 21PSCCh. 12.4 - Prob. 22PSCCh. 12.5 - Prob. 1PSACh. 12.5 - Prob. 2PSACh. 12.5 - Prob. 3PSACh. 12.5 - Prob. 4PSACh. 12.5 - Prob. 5PSACh. 12.5 - Prob. 6PSACh. 12.5 - Prob. 7PSACh. 12.5 - Prob. 8PSBCh. 12.5 - Prob. 9PSBCh. 12.5 - Prob. 10PSBCh. 12.5 - Prob. 11PSBCh. 12.5 - Prob. 12PSBCh. 12.5 - Prob. 13PSBCh. 12.5 - Prob. 14PSBCh. 12.5 - Prob. 15PSBCh. 12.5 - Prob. 16PSBCh. 12.5 - Prob. 17PSCCh. 12.5 - Prob. 18PSCCh. 12.5 - Prob. 19PSCCh. 12.5 - Prob. 20PSCCh. 12.6 - Prob. 1PSACh. 12.6 - Prob. 2PSACh. 12.6 - Prob. 3PSACh. 12.6 - Prob. 4PSACh. 12.6 - Prob. 5PSACh. 12.6 - Prob. 6PSBCh. 12.6 - Prob. 7PSBCh. 12.6 - Prob. 8PSBCh. 12.6 - Prob. 9PSBCh. 12.6 - Prob. 10PSBCh. 12.6 - Prob. 11PSBCh. 12.6 - Prob. 12PSCCh. 12.6 - Prob. 13PSCCh. 12.6 - Prob. 14PSCCh. 12.6 - Prob. 15PSCCh. 12.6 - Prob. 16PSCCh. 12.6 - Prob. 17PSDCh. 12.6 - Prob. 18PSDCh. 12 - Prob. 1RPCh. 12 - Prob. 2RPCh. 12 - Prob. 3RPCh. 12 - Prob. 4RPCh. 12 - Prob. 5RPCh. 12 - Prob. 6RPCh. 12 - Prob. 7RPCh. 12 - Prob. 8RPCh. 12 - Prob. 9RPCh. 12 - Prob. 10RPCh. 12 - Prob. 11RPCh. 12 - Prob. 12RPCh. 12 - Prob. 13RPCh. 12 - Prob. 14RPCh. 12 - Prob. 15RPCh. 12 - Prob. 16RPCh. 12 - Prob. 17RPCh. 12 - Prob. 18RPCh. 12 - Prob. 19RPCh. 12 - Prob. 20RPCh. 12 - Prob. 21RPCh. 12 - Prob. 22RPCh. 12 - Prob. 1CRCh. 12 - Prob. 2CRCh. 12 - Prob. 3CRCh. 12 - Prob. 4CRCh. 12 - Prob. 5CRCh. 12 - Prob. 6CRCh. 12 - Prob. 7CRCh. 12 - Prob. 8CRCh. 12 - Prob. 9CRCh. 12 - Prob. 10CRCh. 12 - Prob. 11CRCh. 12 - Prob. 12CRCh. 12 - Prob. 13CRCh. 12 - Prob. 14CRCh. 12 - Prob. 15CRCh. 12 - Prob. 16CRCh. 12 - Prob. 17CRCh. 12 - Prob. 18CRCh. 12 - Prob. 19CRCh. 12 - Prob. 20CRCh. 12 - Prob. 21CRCh. 12 - Prob. 22CRCh. 12 - Prob. 23CRCh. 12 - Prob. 24CRCh. 12 - Prob. 25CRCh. 12 - Prob. 26CRCh. 12 - Prob. 27CRCh. 12 - Prob. 28CRCh. 12 - Prob. 29CRCh. 12 - Prob. 30CRCh. 12 - Prob. 31CRCh. 12 - Prob. 32CRCh. 12 - Prob. 33CRCh. 12 - Prob. 34CRCh. 12 - Prob. 35CRCh. 12 - Prob. 36CRCh. 12 - Prob. 37CRCh. 12 - Prob. 38CRCh. 12 - Prob. 39CRCh. 12 - Prob. 40CRCh. 12 - Prob. 41CRCh. 12 - Prob. 42CR

Additional Math Textbook Solutions

Find more solutions based on key concepts
Expand the quotients in Exercises 1−8 by partial fractions. 1.

University Calculus: Early Transcendentals (4th Edition)

The equivalent expression of x(y+z) by using the commutative property.

Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)

CHECK POINT I Express as a percent.

Thinking Mathematically (6th Edition)

Write a sentence that illustrates the use of 78 in each of the following ways. a. As a division problem. b. As ...

A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning