Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
Question
Book Icon
Chapter 12.2, Problem 1PSA

a.

To determine

To calculate: The area of each lateral face of pyramid with triangular dimensions as 13 and 10.

a.

Expert Solution
Check Mark

Answer to Problem 1PSA

The area of each lateral face of pyramid is 60.

Explanation of Solution

Given information:

A pyramid has triangular dimensions as 13 and 10.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  1

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  2

Draw altitude perpendicular to base.

The altitude AD can be calculated by applying Pythagoras Theorem.

In right angle triangle ADC , we get

  (AD)2+(DC)2=(AC)2(AD)2+(5)2=(13)2(AD)2+25=169(AD)2=16925(AD)2=144AD=144=12

The altitude drawn perpendicular divides the triangle face into two right triangles of 5-12-13 family.

Lateral face is triangle.

Area of lateral face =12×10×12

Area of lateral face=60

b.

To determine

To find: The lateral area of pyramid with triangular dimensions as 13 and 10.

b.

Expert Solution
Check Mark

Answer to Problem 1PSA

The lateral area of pyramid is 240 .

Explanation of Solution

Given information:

A pyramid has triangular dimensions as 13 and 10.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  3

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle Lateral Area = Area of lateral face × Number of faces

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  4

Draw altitude perpendicular to base.

The altitude AD can be calculated by applying Pythagoras Theorem.

In right angle triangle ADC , we get

  (AD)2+(DC)2=(AC)2(AD)2+(5)2=(13)2(AD)2+25=169(AD)2=16925(AD)2=144AD=144=12

The altitude drawn perpendicular divides the triangle face into two right triangles of 5-12-13 family.

Lateral face is triangle.

Area of lateral face =12×10×12

Area of lateral face = 60

Lateral Area = Area of lateral face × Number of faces

Lateral Area = 60 × 4

Lateral Area = 240

c.

To determine

To calculate: The total area of pyramid with triangular dimensions as 13 and 10.

c.

Expert Solution
Check Mark

Answer to Problem 1PSA

The total area of pyramid is 340 .

Explanation of Solution

Given information:

A pyramid has triangular dimensions as 13 and 10.

Formula used:

The below theorem is used:

Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  5

In right angle triangle,

  a2+b2c2

Area of triangle: A=12×b×h

b = base of triangle

h = height of triangle Area of square: A=s2

s = side of square Lateral Area = Area of lateral face × Number of faces

Total area of pyramid = Area of square base + Lateral Area

Calculation:

  Geometry For Enjoyment And Challenge, Chapter 12.2, Problem 1PSA , additional homework tip  6

Draw altitude perpendicular to base.

The altitude AD can be calculated by applying Pythagoras Theorem.

In right angle triangle ADC , we get

  (AD)2+(DC)2=(AC)2(AD)2+(5)2=(13)2(AD)2+25=169(AD)2=16925(AD)2=144AD=144=12

The altitude drawn perpendicular divides the triangle face into two right triangles of 5-12-13 family.

Lateral face is triangle.

Area of lateral face =12×10×12

Area of lateral face = 60

Lateral Area = Area of lateral face × Number of faces

Lateral Area = 60 × 4

Lateral Area = 240

Area of square base: A=(10)2=100

Total area of pyramid = Area of square base + Lateral Area

Total area of pyramid = 100 + 240

Total area of pyramid = 340

Chapter 12 Solutions

Geometry For Enjoyment And Challenge

Ch. 12.1 - Prob. 11PSCCh. 12.2 - Prob. 1PSACh. 12.2 - Prob. 2PSACh. 12.2 - Prob. 3PSACh. 12.2 - Prob. 4PSACh. 12.2 - Prob. 5PSACh. 12.2 - Prob. 6PSBCh. 12.2 - Prob. 7PSBCh. 12.2 - Prob. 8PSBCh. 12.2 - Prob. 9PSBCh. 12.2 - Prob. 10PSCCh. 12.2 - Prob. 11PSCCh. 12.2 - Prob. 12PSCCh. 12.2 - Prob. 13PSCCh. 12.3 - Prob. 1PSACh. 12.3 - Prob. 2PSACh. 12.3 - Prob. 3PSACh. 12.3 - Prob. 4PSACh. 12.3 - Prob. 5PSACh. 12.3 - Prob. 6PSBCh. 12.3 - Prob. 7PSBCh. 12.3 - Prob. 8PSBCh. 12.3 - Prob. 9PSBCh. 12.3 - Prob. 10PSBCh. 12.3 - Prob. 11PSBCh. 12.3 - Prob. 12PSCCh. 12.3 - Prob. 13PSCCh. 12.3 - Prob. 14PSCCh. 12.4 - Prob. 1PSACh. 12.4 - Prob. 2PSACh. 12.4 - Prob. 3PSACh. 12.4 - Prob. 4PSACh. 12.4 - Prob. 5PSACh. 12.4 - Prob. 6PSACh. 12.4 - Prob. 7PSBCh. 12.4 - Prob. 8PSBCh. 12.4 - Prob. 9PSBCh. 12.4 - Prob. 10PSBCh. 12.4 - Prob. 11PSBCh. 12.4 - Prob. 12PSBCh. 12.4 - Prob. 13PSBCh. 12.4 - Prob. 14PSBCh. 12.4 - Prob. 15PSBCh. 12.4 - Prob. 16PSBCh. 12.4 - Prob. 17PSBCh. 12.4 - Prob. 18PSBCh. 12.4 - Prob. 19PSCCh. 12.4 - Prob. 20PSCCh. 12.4 - Prob. 21PSCCh. 12.4 - Prob. 22PSCCh. 12.5 - Prob. 1PSACh. 12.5 - Prob. 2PSACh. 12.5 - Prob. 3PSACh. 12.5 - Prob. 4PSACh. 12.5 - Prob. 5PSACh. 12.5 - Prob. 6PSACh. 12.5 - Prob. 7PSACh. 12.5 - Prob. 8PSBCh. 12.5 - Prob. 9PSBCh. 12.5 - Prob. 10PSBCh. 12.5 - Prob. 11PSBCh. 12.5 - Prob. 12PSBCh. 12.5 - Prob. 13PSBCh. 12.5 - Prob. 14PSBCh. 12.5 - Prob. 15PSBCh. 12.5 - Prob. 16PSBCh. 12.5 - Prob. 17PSCCh. 12.5 - Prob. 18PSCCh. 12.5 - Prob. 19PSCCh. 12.5 - Prob. 20PSCCh. 12.6 - Prob. 1PSACh. 12.6 - Prob. 2PSACh. 12.6 - Prob. 3PSACh. 12.6 - Prob. 4PSACh. 12.6 - Prob. 5PSACh. 12.6 - Prob. 6PSBCh. 12.6 - Prob. 7PSBCh. 12.6 - Prob. 8PSBCh. 12.6 - Prob. 9PSBCh. 12.6 - Prob. 10PSBCh. 12.6 - Prob. 11PSBCh. 12.6 - Prob. 12PSCCh. 12.6 - Prob. 13PSCCh. 12.6 - Prob. 14PSCCh. 12.6 - Prob. 15PSCCh. 12.6 - Prob. 16PSCCh. 12.6 - Prob. 17PSDCh. 12.6 - Prob. 18PSDCh. 12 - Prob. 1RPCh. 12 - Prob. 2RPCh. 12 - Prob. 3RPCh. 12 - Prob. 4RPCh. 12 - Prob. 5RPCh. 12 - Prob. 6RPCh. 12 - Prob. 7RPCh. 12 - Prob. 8RPCh. 12 - Prob. 9RPCh. 12 - Prob. 10RPCh. 12 - Prob. 11RPCh. 12 - Prob. 12RPCh. 12 - Prob. 13RPCh. 12 - Prob. 14RPCh. 12 - Prob. 15RPCh. 12 - Prob. 16RPCh. 12 - Prob. 17RPCh. 12 - Prob. 18RPCh. 12 - Prob. 19RPCh. 12 - Prob. 20RPCh. 12 - Prob. 21RPCh. 12 - Prob. 22RPCh. 12 - Prob. 1CRCh. 12 - Prob. 2CRCh. 12 - Prob. 3CRCh. 12 - Prob. 4CRCh. 12 - Prob. 5CRCh. 12 - Prob. 6CRCh. 12 - Prob. 7CRCh. 12 - Prob. 8CRCh. 12 - Prob. 9CRCh. 12 - Prob. 10CRCh. 12 - Prob. 11CRCh. 12 - Prob. 12CRCh. 12 - Prob. 13CRCh. 12 - Prob. 14CRCh. 12 - Prob. 15CRCh. 12 - Prob. 16CRCh. 12 - Prob. 17CRCh. 12 - Prob. 18CRCh. 12 - Prob. 19CRCh. 12 - Prob. 20CRCh. 12 - Prob. 21CRCh. 12 - Prob. 22CRCh. 12 - Prob. 23CRCh. 12 - Prob. 24CRCh. 12 - Prob. 25CRCh. 12 - Prob. 26CRCh. 12 - Prob. 27CRCh. 12 - Prob. 28CRCh. 12 - Prob. 29CRCh. 12 - Prob. 30CRCh. 12 - Prob. 31CRCh. 12 - Prob. 32CRCh. 12 - Prob. 33CRCh. 12 - Prob. 34CRCh. 12 - Prob. 35CRCh. 12 - Prob. 36CRCh. 12 - Prob. 37CRCh. 12 - Prob. 38CRCh. 12 - Prob. 39CRCh. 12 - Prob. 40CRCh. 12 - Prob. 41CRCh. 12 - Prob. 42CR
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning