a.
To calculate: The area of each lateral face of pyramid with triangular dimensions as 13 and 10.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 1PSA
The area of each lateral face of pyramid is
Explanation of Solution
Given information:
A pyramid has triangular dimensions as 13 and 10.
Formula used:
The below theorem is used:
Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.
In right
Area of triangle:
b = base of triangle
h = height of triangle
Calculation:
Draw altitude perpendicular to base.
The altitude AD can be calculated by applying Pythagoras Theorem.
In right angle triangle ADC , we get
The altitude drawn perpendicular divides the triangle face into two right
Lateral face is triangle.
Area of lateral face
Area of lateral face=60
b.
To find: The lateral area of pyramid with triangular dimensions as 13 and 10.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 1PSA
The lateral area of pyramid is
Explanation of Solution
Given information:
A pyramid has triangular dimensions as 13 and 10.
Formula used:
The below theorem is used:
Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.
In right angle triangle,
Area of triangle:
b = base of triangle
h = height of triangle Lateral Area = Area of lateral face
Calculation:
Draw altitude perpendicular to base.
The altitude AD can be calculated by applying Pythagoras Theorem.
In right angle triangle ADC , we get
The altitude drawn perpendicular divides the triangle face into two right triangles of
Lateral face is triangle.
Area of lateral face
Area of lateral face = 60
Lateral Area = Area of lateral face
Lateral Area = 60
Lateral Area = 240
c.
To calculate: The total area of pyramid with triangular dimensions as 13 and 10.
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 1PSA
The total area of pyramid is
Explanation of Solution
Given information:
A pyramid has triangular dimensions as 13 and 10.
Formula used:
The below theorem is used:
Pythagoras theorem states that “In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.
In right angle triangle,
Area of triangle:
b = base of triangle
h = height of triangle Area of square:
s = side of square Lateral Area = Area of lateral face
Total area of pyramid = Area of square base + Lateral Area
Calculation:
Draw altitude perpendicular to base.
The altitude AD can be calculated by applying Pythagoras Theorem.
In right angle triangle ADC , we get
The altitude drawn perpendicular divides the triangle face into two right triangles of
Lateral face is triangle.
Area of lateral face
Area of lateral face = 60
Lateral Area = Area of lateral face
Lateral Area = 60
Lateral Area = 240
Area of square base:
Total area of pyramid = Area of square base + Lateral Area
Total area of pyramid = 100 + 240
Total area of pyramid = 340
Chapter 12 Solutions
Geometry For Enjoyment And Challenge
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
Pre-Algebra Student Edition
University Calculus: Early Transcendentals (4th Edition)
Introductory Statistics
Basic Business Statistics, Student Value Edition
- What is the area of this figure? 22 mm 5 mm 3 mm 3 mm 7 mm 4 mm Write your answer using decimals. Use 3.14 for л. Submit square millimetersarrow_forwardThis figure is made up of a rectangle and parallelogram. What is the area of this figure? Enter your answer in the box. Do not round any side lengths.arrow_forwardRhombus PQRSPQRS is shown on the coordinate plane. Points MM and NN are midpoints of their respective sides.arrow_forward
- Please help me answer this question!. Please handwrite it. I don't require AI answers. Thanks for your time!.arrow_forward1 What is the area of triangle ABC? 12 60° 60° A D B A 6√√3 square units B 18√3 square units 36√3 square units D 72√3 square unitsarrow_forwardPar quel quadrilatère est-elle représentée sur ce besoin en perspective cavalièrearrow_forward
- -10 M 10 y 5 P -5 R 5 -5 Ο 10 N -10 Οarrow_forwardDescribe enlargement on map gridarrow_forward◆ Switch To Light Mode HOMEWORK: 18, 19, 24, 27, 29 ***Please refer to the HOMEWORK sheet from Thursday, 9/14, for the problems ****Please text or email me if you have any questions 18. Figure 5-35 is a map of downtown Royalton, showing the Royalton River running through the downtown area and the three islands (A, B, and C) connected to each other and both banks by eight bridges. The Down- town Athletic Club wants to design the route for a marathon through the downtown area. Draw a graph that models the layout of Royalton. FIGURE 5-35 North Royalton Royalton River South Royption 19. A night watchman must walk the streets of the Green Hills subdivision shown in Fig. 5-36. The night watch- man needs to walk only once along each block. Draw a graph that models this situation.arrow_forward
- Solve this question and check if my answer provided is correctarrow_forwardProof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.arrow_forwardQuadrilateral BCDE is similar to quadrilateral FGHI. Find the measure of side FG. Round your answer to the nearest tenth if necessary. BCDEFGHI2737.55arrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)