Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 16RP
To determine

To calculate: The total volume of the castle, including the towers.

Expert Solution & Answer
Check Mark

Answer to Problem 16RP

The total volume of the castle, including the towers is 153570.003 unit3 .

Explanation of Solution

Given information:

Main Castle: length (l1)=100 units , breadth (b1)=50 units and height (h1)=30 units

Front-left Pillar: length of cuboid (l2)=3 units , breadth of cuboid (b2)=3 units , height of cuboid (h2)=50 units , length of square pyramid (l3)=3 units , breadth of square pyramid (b3)=3 units and height of square pyramid (h3)=3 units

Front-right Pillar: radius of cylinder (r1)=3 units , height of cylinder (h4)=50 units , radius of cone (r2)=3 units and height of cone (h5)=3 units

Rear-left Pillar: radius of cylinder (r3)=3 units , height of cylinder (h6)=50 units and radius of hemisphere (r4)=3 units

Rear-right Pillar: base of the triangular pyramid’s base (b4)=3 units , altitude of the triangular pyramid (h7)=3 units , base of triangular prism’s base (b5)=3 units and altitude of triangular prism (h8)=50 units

Formula used:

Volume of Cuboid (V)=lbh …………………………………………. (i)

where l = length of cuboid

b = breadth of cuboid

h = height of cuboid

Volume of Square Pyramid (V)=(13)lbh ……………………………. (ii)

where l = length of square pyramid

b = breadth of square pyramid

h = height of square pyramid

Volume of Cylinder (V)=πr2h ………………………………………. (iii)

where r = radius of cylinder

h = height of cylinder

Volume of Cone (V)=(13)πr2h ……………………………………… (iv)

where r = radius of cone

h = height of cone

Volume of Hemisphere (V)=(23)πr3 ………………………………… (v)

where r = radius of hemisphere

Volume of the Triangular Pyramid (V)=(13)(12bh)H ……………... (vi)

where b = base of the triangular pyramid

h = height of triangular base of pyramid

H = altitude of the triangular pyramid

Volume of Triangular Prism (V)=(12bh)H ………………………... (vii)

where b = base of the triangular prism

h = height of triangular base of prism

H = altitude of the triangular prism

Pythagoras Theorem for any right-angled triangle,

  h2=b2+p2 ………………………………………………………….. (viii)

where h = hypotenuse of the right-angled triangle

b = base of the right-angled triangle

p = perpendicular of the right-angled triangle

Calculation:

Total Volume of Castle (V) = Volume of Main Castle (V1) + Volume of Front-left Pillar (V2) +

Volume of Front-right Pillar (V3) + Volume of Rear-left Pillar (V4) + Volume of Rear-right Pillar (V5)

  V=V1+V2+V3+V4+V5 …………………………………………….. (ix)

Now using equation (i) to calculate the volume of main castle,

  V1=l1b1h1

Substituting the given values of l1 , b1 and h1 in above equation to get,

  V1=100×50×30V1=150000 unit3

Volume of Front-left Pillar = Volume of Cuboid + Volume of Square Pyramid

Using equations (i) and (ii) in above equation to get,

  V2=l2b2h2+(13)l3b3h3

Substituting the given values in above equation,

  V2=3×3×50+(13)×3×3×3V2=450+3×3V2=450+9V2=459 unit3

Volume of Front-right Pillar = Volume of Cylinder + Volume of Cone

Using equations (iii) and (iv) in above equation to get,

  V3=πr12h1+(13)πr22h2

Substituting the given values in the above equation,

  V3=π×32×50+(13)×π×32×3V3=π×9×50+π×32V3=450π+9πV3=459πV3=1441.991 unit3

Volume of Rear-left Pillar = Volume of Cylinder + Volume of Hemisphere

Using equations (iii) and (v) in above equation to get,

  V4=πr32h3+(23)πr43

Substituting the given values in above equation,

  V4=π×32×50+(23)×π×33V4=450π+2×π×32V4=450π+18πV4=468πV4=1470.265 unit3

Volume of Rear-right Pillar = Volume of Triangular Prism + Volume of Triangular Pyramid

Using equations (vi) and (vii) in above equation to get,

  V5=(12b5H)h8+(13)(12b4H)h7 ……………………………… (x)

Here we can see that height of triangular prism’s base is taken equal to the height of triangular pyramid’s base because the dimensions of bases of both the solids are same. This height of bases of both the solids i.e., His unknown. Let us calculate it by considering triangular pyramid’s base

We can calculate Hby bisecting any side whose dimension is known to us and then applying Pythagoras theorem to it.

In ADB as per Pythagoras Theorem,

  AB2=BD2+AD2AD2=AB2BD2

Taking square root of the terms on both sides of the above equation,

  AD=AB2BD2

Here AD=H and substituting the known values in above equation

  H=321.52H=92.25H=6.75H=2.598 units

Substituting the given values along with the calculated value of Hin theequation (x),

  V5=(12×3×2.598)×50+(13)×(12×3×2.598)×3V5=(3×1.299)×50+(3×1.299)V5=194.85+3.897V5=198.747 unit3

Now putting the obtained values of V1,V2,V3,V4and V5in equation (ix) to get,

  V=150000+459+1441.991+1470.265+198.747V=153570.003 unit3

Hence, the total volume of the castle, including the towers is 153570.003 unit3 .

Chapter 12 Solutions

Geometry For Enjoyment And Challenge

Ch. 12.1 - Prob. 11PSCCh. 12.2 - Prob. 1PSACh. 12.2 - Prob. 2PSACh. 12.2 - Prob. 3PSACh. 12.2 - Prob. 4PSACh. 12.2 - Prob. 5PSACh. 12.2 - Prob. 6PSBCh. 12.2 - Prob. 7PSBCh. 12.2 - Prob. 8PSBCh. 12.2 - Prob. 9PSBCh. 12.2 - Prob. 10PSCCh. 12.2 - Prob. 11PSCCh. 12.2 - Prob. 12PSCCh. 12.2 - Prob. 13PSCCh. 12.3 - Prob. 1PSACh. 12.3 - Prob. 2PSACh. 12.3 - Prob. 3PSACh. 12.3 - Prob. 4PSACh. 12.3 - Prob. 5PSACh. 12.3 - Prob. 6PSBCh. 12.3 - Prob. 7PSBCh. 12.3 - Prob. 8PSBCh. 12.3 - Prob. 9PSBCh. 12.3 - Prob. 10PSBCh. 12.3 - Prob. 11PSBCh. 12.3 - Prob. 12PSCCh. 12.3 - Prob. 13PSCCh. 12.3 - Prob. 14PSCCh. 12.4 - Prob. 1PSACh. 12.4 - Prob. 2PSACh. 12.4 - Prob. 3PSACh. 12.4 - Prob. 4PSACh. 12.4 - Prob. 5PSACh. 12.4 - Prob. 6PSACh. 12.4 - Prob. 7PSBCh. 12.4 - Prob. 8PSBCh. 12.4 - Prob. 9PSBCh. 12.4 - Prob. 10PSBCh. 12.4 - Prob. 11PSBCh. 12.4 - Prob. 12PSBCh. 12.4 - Prob. 13PSBCh. 12.4 - Prob. 14PSBCh. 12.4 - Prob. 15PSBCh. 12.4 - Prob. 16PSBCh. 12.4 - Prob. 17PSBCh. 12.4 - Prob. 18PSBCh. 12.4 - Prob. 19PSCCh. 12.4 - Prob. 20PSCCh. 12.4 - Prob. 21PSCCh. 12.4 - Prob. 22PSCCh. 12.5 - Prob. 1PSACh. 12.5 - Prob. 2PSACh. 12.5 - Prob. 3PSACh. 12.5 - Prob. 4PSACh. 12.5 - Prob. 5PSACh. 12.5 - Prob. 6PSACh. 12.5 - Prob. 7PSACh. 12.5 - Prob. 8PSBCh. 12.5 - Prob. 9PSBCh. 12.5 - Prob. 10PSBCh. 12.5 - Prob. 11PSBCh. 12.5 - Prob. 12PSBCh. 12.5 - Prob. 13PSBCh. 12.5 - Prob. 14PSBCh. 12.5 - Prob. 15PSBCh. 12.5 - Prob. 16PSBCh. 12.5 - Prob. 17PSCCh. 12.5 - Prob. 18PSCCh. 12.5 - Prob. 19PSCCh. 12.5 - Prob. 20PSCCh. 12.6 - Prob. 1PSACh. 12.6 - Prob. 2PSACh. 12.6 - Prob. 3PSACh. 12.6 - Prob. 4PSACh. 12.6 - Prob. 5PSACh. 12.6 - Prob. 6PSBCh. 12.6 - Prob. 7PSBCh. 12.6 - Prob. 8PSBCh. 12.6 - Prob. 9PSBCh. 12.6 - Prob. 10PSBCh. 12.6 - Prob. 11PSBCh. 12.6 - Prob. 12PSCCh. 12.6 - Prob. 13PSCCh. 12.6 - Prob. 14PSCCh. 12.6 - Prob. 15PSCCh. 12.6 - Prob. 16PSCCh. 12.6 - Prob. 17PSDCh. 12.6 - Prob. 18PSDCh. 12 - Prob. 1RPCh. 12 - Prob. 2RPCh. 12 - Prob. 3RPCh. 12 - Prob. 4RPCh. 12 - Prob. 5RPCh. 12 - Prob. 6RPCh. 12 - Prob. 7RPCh. 12 - Prob. 8RPCh. 12 - Prob. 9RPCh. 12 - Prob. 10RPCh. 12 - Prob. 11RPCh. 12 - Prob. 12RPCh. 12 - Prob. 13RPCh. 12 - Prob. 14RPCh. 12 - Prob. 15RPCh. 12 - Prob. 16RPCh. 12 - Prob. 17RPCh. 12 - Prob. 18RPCh. 12 - Prob. 19RPCh. 12 - Prob. 20RPCh. 12 - Prob. 21RPCh. 12 - Prob. 22RPCh. 12 - Prob. 1CRCh. 12 - Prob. 2CRCh. 12 - Prob. 3CRCh. 12 - Prob. 4CRCh. 12 - Prob. 5CRCh. 12 - Prob. 6CRCh. 12 - Prob. 7CRCh. 12 - Prob. 8CRCh. 12 - Prob. 9CRCh. 12 - Prob. 10CRCh. 12 - Prob. 11CRCh. 12 - Prob. 12CRCh. 12 - Prob. 13CRCh. 12 - Prob. 14CRCh. 12 - Prob. 15CRCh. 12 - Prob. 16CRCh. 12 - Prob. 17CRCh. 12 - Prob. 18CRCh. 12 - Prob. 19CRCh. 12 - Prob. 20CRCh. 12 - Prob. 21CRCh. 12 - Prob. 22CRCh. 12 - Prob. 23CRCh. 12 - Prob. 24CRCh. 12 - Prob. 25CRCh. 12 - Prob. 26CRCh. 12 - Prob. 27CRCh. 12 - Prob. 28CRCh. 12 - Prob. 29CRCh. 12 - Prob. 30CRCh. 12 - Prob. 31CRCh. 12 - Prob. 32CRCh. 12 - Prob. 33CRCh. 12 - Prob. 34CRCh. 12 - Prob. 35CRCh. 12 - Prob. 36CRCh. 12 - Prob. 37CRCh. 12 - Prob. 38CRCh. 12 - Prob. 39CRCh. 12 - Prob. 40CRCh. 12 - Prob. 41CRCh. 12 - Prob. 42CR
Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Problems on Area and Circumference of Circle| Basics of Circle| Questions on Circle||BrainPanthers; Author: Brain Panthers;https://www.youtube.com/watch?v=RcNEL9OzcC0;License: Standard YouTube License, CC-BY