Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.2, Problem 12.75P
For the particle of Prob. 12.74, show (a) that the velocity of the particle and the central force F are proportional to the distance r from the particle to the center of force O, (b) that the radius of curvature of the path is proportional to r3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ex.5.7 The acceleration of a particle is directly
proportional to the time t. At t = 0, the velocity of
the particle is 400 mm/s. Knowing that v = 370
mm/s and x = 500 mm when t = 1 s, determine the
velocity, the position and the total distance traveled
when t = 7 s.
PROBLEM 2.13
A car travels north at 20.0 m/s for 15.0 min. It then travels south at 25.0 m/s for
20.0 min.
14. Determine the total distance the car travels.
c. 98 km
d. 50 km
а.
108 km
48 km
15. Determine its displacement.
18 km
b.
c. 12km
d. 16 km
a.
b.
24 km
2) A ball with a weight of 0.3N is attached to the end of an elastic thin cord of which unstretched
length is 59cm. The other end of the cord is fixed at a point on the horizontal frictionless surface
of a table. The stiffness of the cord is 20 N/m. At an instant, the ball moves with a velocity of
2.95 m/s which is perpendicular to the radius of curvature of the path of the ball and the length
of the cord is 89cm at that instant. For the elastic cord to be stretched all the time during the
motion of this ball, what is the minimum value of the velocity of the ball?
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6. Exercise 2.5.32 Block A is observed to be dropping down at a steady 0.9 ft/s. At what velocity must the free end of the pulley be moving? Larrow_forwardpleasew include a fbdarrow_forwardProblem 2.130 A plane B is approaching a runway along the trajectory shown with = 15°, while the radar antenna A is monitoring the distance between A and B, as well as the angle 0. The plane has a constant approach speed up. In addition, when 0 = 20°, it is known that = 216 ft/s and 8 = -0.022 rad/s. Use Eq. (2.48) to determine the corresponding values of vo and of the distance between the plane and the radar antenna 40arrow_forward
- 1. Two mobile containers, A and B, carries raw materials for concrete batching plant. The containers' motions are defined by their velocity vectors: for container A, A = 6i + 4k (km/hr) and for container B, B = -4i +7k (km/hr). What is the angle between the line of action (path) of both containers? Express your answer in units of degree. 2. Two cables A and B are attached to a hook. Cable A exerts a pull with a magnitude and direction defined by the vector A = 6i + 4k (kN). Cable B is also attached to the same hook where cable A is attached, cable B exerts a pull with a magnitude and direction defined by the equation B = -4i +7k (kN). What should be the magnitude of pull exerted at cable B such that the line of action of resultant force is along the positive z-direction (the resultant lies along the positive z-axis)? Express your answer in unit of kN.arrow_forwardPROBLEM 3.12 An object is launched at a speed of 20.0 m/s from the top of a tall tower. The height y of the object with respect to the base of the tower as a function of the timet elapsed from launch is y(t) = -4.90t² + 19.32t + 60, where y is in meters and t is in seconds. Determine: 13. the height H of the tower. 50 m c. 70 m d. 80 m а. b. 60 m 14. the launch angle. с. 75.35° d. 77.35° а. 71.35° b. 73.35° 15. the horizontal distance traveled by the object before it hits the ground. с. 32.28 m d. 34.28 m a. 28.28 m b. 30.28 marrow_forward1. A projectile is launched from point A with an initial velocity v, =100 m/s, the projectile hits the inclined hill at point B. determine (a) the distance d, (b) the velocity before the projectile hits point B. (c) the radius of curvature at B, and (d) the minimum radius of curvature of the trajectory. For a 2D motion of a projectile: v, - (v,), x=x, +(v, ), 10000 m y= y, +(v,-4gr 30 1200 m (not scaled)arrow_forward
- PROBLEM 2.16 18. The position of a particle moving along the x-axis is given by x = 3.0t2 – 2.0t³, where x is in meters and t is in seconds. What is the position of the particle when it achieves its maximum speed in the positive x-direction? 0.5 m с. 2.0 m d. 2.5 m а. b. 1.5 marrow_forwardKindly answer it as fast as you can.. and correctly.arrow_forwardParvinbhaiarrow_forward
- PROBLEM 2.24 29. A fighter jet lands on the deck of an aircraft carrier. It touches down with a speed of 75 m/s and comes to a complete stop over a distance of 200 m. If this process happens with constant deceleration, what is the speed of the jet 50 m before its final stopping location? 66.95 m/s 65.95 m/s c. 67.95 m/s d. 68.95 m/s a. b.arrow_forwardb. A cart full of water is initially at rest on a smooth (frictionless) surface. Suddenly it starts ejecting water to the left (negative x-direction) at a constant velocity relative to the cart Vw/c. a. Immediately after the cart starts ejecting water, the acceleration of the cart is i. To the right Equal to zero To the left Cannot be determined ii. iii. iv. b. After some water has left the tank, you determine the cart has absolute velocity, Vc. The absolute velocity of the water leaving the cart is i. To the left ii. iii. iv. Equal to zero To the right Cannot be determinedarrow_forwardA motocross rider performs a triple jump maneuver from point B to point C. The combined mass of the rider and motorcycle is 165 kg. The curvature of the ramp between point A and point B is described by the function y = 0.64x² - 1.6x, where the origin is at point A and both x and y are measured in meters. (a) Show that the angle of the ramp at point B is approximately 57.995°. (b) In order to land at point C, determine the speed at which the rider must leave the ramp at B. Motorcycle jump (https://www.bertsmegamall.com/blog) (c) If the rider's speed increases at a constant rate from 5.5 m/s at point A to the computed speed at point B found in part (b), determine the motorcycle's constant tangential acceleration knowing that the arc length traveled along the ramp from A to B is 3.3 meters. (d) At point B just before leaving the ramp, determine the normal force exerted by the ground. on the motorcycle and the traction force (forward force parallel to the surface) between the motorcycle…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY