Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.3, Problem 12.95P
A particle of mass m describes the logarithmic spiral
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The sphere of mass m1 = 5 kg falls from a height H = 1.4 m onto the homogeneous board of negligible mass. The board can rotate around a horizontal axis passing through point O, and a body of mass m2 = 3.9 kg is placed on it at a distance b = 1 m from the axis of rotation. The collision is perfectly inelastic. How high does the body of mass m2 rise after the collision (in m) if a = 0.5 m?
The sphere of mass m1 = 5 kg falls from a height H = 1.4 m onto the homogeneous board of negligible mass. The board can rotate around a horizontal axis passing through point O, and a body of mass m2 = 3.9 kg is placed on it at a distance b = 1 m from the axis of rotation. The collision is perfectly inelastic. How high does the body of mass m2 rise after the collision (in m) if a = 0.5 m?
4. A loading car is at rest on a track forming an angle of 25° with the vertical when a force is applied
to the cable attached at C. The gross weight of the car and its load is 5465 lb WG, and it acts at
point G. Know the tension in the cable connected at C is 5000 Ib Tc. Neglect friction between the car
and the track. Determine how far the car travels in 15 seconds. Model this as a particle at G.
24 in.
B
25 in.
30 in.
25 in.
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1 A particle P of mass m = 1 kg arrives at point O with a horizontal velocity Uo and starts rolling do a circle with radius R = 1.5 m. The particle is attached to the point O by means of a linear spring stiffness k = 65 N/m that is unstretched when the particle is at O. Assume that during the motion P along the circle, the spring follows the circle. Let N = {nx, ny} be a fixed reference frame as shown the figure and let B = {bx, by} be a reference frame attached to P so that bx is tanger the circular path and by is perpendicular to the circular path. For convenience, take g = 10 m/s² i this question. O¦ ny 0/ nr Parrow_forwardJourney through the Center of the Earth. A 1024-kg blue ball is dropped from an initial z-position of 2.3 x 106 m through the center of a planet with radius 7.6 x 106 m. If the mass of the planet is 33.9 x 1015 kg, measure the displacement of the ball at time t = 9 s?arrow_forwardThe arm and seat of the amusement-park ride have a mass of 1.7 Mg, with the center of mass located at point G₁. The passenger seated at A has a mass of 117 kg, with the center of mass located at G₂.( Figure 1) Figure 4 m B G₁ 0 16 m Part A If the arm is raised to a position where 0 = 150° and released from rest, determine the speed of the passenger at the instan 0 = 0°. The arm has a radius of gyration of kG1 = 12 m about its center of mass G₁. Neglect the size of the passenger. Express your answer with the appropriate units. V = Value Submit μА Provide Feedback Request Answer Units ****** ? Nextarrow_forward
- Channel AB is fixed in space, and its centerline lies in the xy plane. The plane containing edges AC and AD of the channel is parallel to the xz plane. The surfaces of the channel are frictionless and the sphere E has 1.9 kg mass. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. N N E 30° x F 20° B ᎠᏓ C 30°/A 30° Determine the force supported by cord EF, and the reactions RC and RD between the sphere and sides C and D, respectively, of the channel. (Round the final answers to four decimal places.) The force supported by cord EF is The reactions RC and Rp between the sphere and sides Cand D. respectively, of the channel are as follows: RC= RD= z N. 4arrow_forward5. A 2-kg sphere is attached to a massless rigid rod attached to a fixed pivot point O. The rigid rod and mass rotate in the horizontal plane. A moment is applied to the rod of magnitude M = 0.5t² N. m, where t is in seconds. The length of the rod is 0.5 m. Determine the speed of the sphere after the moment is applied for 5 seconds. M(t)arrow_forwardVA₂ PLANE OF CONTACT ÚB₂ X A B 0 m m velocity = 1.52 On an air hockey table, two pucks of identical mass collide in the middle of the rink. Puck A had an initial and puck B had an initial velocity B = 3.1 according to the x-y axis shown. The plane of contact can be thought of as a line angled 0 = 32° above the x-axis. If the coefficient of restitution is e = 0.41 between the pucks, what are the velocities of the pucks after the impact? s i+ i+ m S m Ⓒ 0 UBC Engineering Sarrow_forward
- 1. A wood block of mass mw = 200 g is projected from the ground at a speed vo = 35 m/s and at an angle 60 = 50°. When at height h= 24 m the wood block was hit by a bullet of mass m = 25 g which was moving at v= 220 m/s and at an angle 6 = 70°. After the collision, the bullet embedded itself in the block and move together and land at point A on the ground. Then they move on the ground that has coefficient of kinetic friction u: = 0.5 and start to compress a horizontal spring at point B. The distance between point À and B is 18 m and the spring constant k = 3x10? N/m. Right end of the spring is fixed, and all motions are confined in x-y plane. Wood block + Bullet Bullet Wood B block (a) Was the collision between the wood block and the bullet elastic or inelastic? Explain quantitively. (b) Find the maximum height from the ground the block with the bullet reached. (c) How far is point A from the launch point of the wood block? (d) Calculate the velocity at which the block-bullet system…arrow_forwardThe platform swing consists of a 190-lb flat plate suspended by four rods of negligible weight. When the swing is at rest, the 170-lb man jumps off the platform when his center of gravity G is 10 ft from the pin at A. This is done with a horizontal velocity of 5 ft/s, measured relative to the swing at the level of G. (Eigure 1) Figure 1 of 1 10 ft 11 ft 4 ftarrow_forwardA lightweight drone (1.00 kg) is launched at 800 m high and moves upward at a constant velocity (while ignoring the effects of gravity only on the drone). The balloon, when measured at a horizontal distance from you, is about 1600 m away from you. At the moment when the drone moves, you shoot a bullet (weight =180 g) with an initial velocity of 1009 m/s at a fixed angle α, where sin α=3/5 and cos α= 4/5. (g = 9.8 m/s2) Question: Provided that the collision is inelastic, calculate the speed after the collisionarrow_forward
- A section of track for a roller coaster consists of two circular arcs ABC and CD joined by a straight portion BC. The radius of AB is 27 m and the radius of CD is 72 m. The car and its occupants, of total mass 250 kg, reach point A with practically no velocity and then drop freely along the track. Determine the normal force exerted by the track on the car as the car reaches point B . Ignore air resistance and rolling resistance.arrow_forward1. The two blocks shown weigh W = 60lb and W, = 40lb . If the blocks are released from rest from the position shown, determine the velocity of block B A В after it has moved 10 ft. Use Constraint Equations (for pulley), Equation of Motion (Newton's second law), and the Principle of Work and Energy. NOT allowed to use Chegg or other such websites. NOT allowed to use Chegg or other such websites B.arrow_forwardQ.1. A block of mass m = 0.5 kg is pushed against a horizontal spring of spring constant k = 450 N/m and negligible mass. The spring is compressed a distance x from equilibrium, and then released from rest. The block travels along a frictionless horizontal surface and reaches point B with a speed vg = 12 m/s. Take g = 10 m/s2. The compression of the spring is: a. x = 0.16 m b. x = 0.467 m c. x = 0.533 m B. d. x = 0.4 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY