Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.1, Problem 12.54P
To determine
Required angle of tilt Ø if passengers are to feel side forces equal to 10% of their weights.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2.8. A van of unladen mass 3/4 ton has a minimum braking time of 2.0 s in coming to rest from
48 km/h. When the same force is used, calculate the distance covered in coming to rest from a
speed of 30 km/h (a) without, and (b) with a load of 1/2 ton.
1.A person is to be released from rest on a swing pulled away from the vertical by an angle of 20.0°. The two frayed ropes of the swing are 2.75 m long, and will break if the tension in either of them exceeds 355 N. (a) What is the maximum weight the person can have and not break the ropes? (b)If the person is released at an angle greater than 20.0°, does the maximum weight increase, decrease, or stay the same? (c)Solve in Newton Law, Conversation Law, and Work-Kinetic Theorem.
A wedge is used to lift (impending motion) an 11-kg block. The coefficient of static
friction for all surfaces is 0.20. [0= 12.5°; use g = 9.81 m/s² and neglect the weight of the
wedge]
Determine:
a. The free-body diagrams of the block and the wedge with the complete forces. In all
cases, show the normal force and frictional force as a combined resultant force, R.
J
b.
The normal force, N, between the block and the wedge. (Value only, no direction)
***]
c. The resultant force, R, between the wedge and the floor. (with direction/angle
measured from the x-axis; must be acute,
>
P-
0
W
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. In a spring loaded governor of the Hartnell type, the mass of each ball is 5 kg and the lift of the sleeve is 50 mm. The speed at which the governor begins to float is 240 rpm, and at this speed the radius of the ball path is 110 mm. The mean working speed of the governor is 20 times the range of speed when friction is neglected. If the lengths of ball and roller arm of the bell crank lever are 120 mm and 100 mm respectively. If the distance between the center of pivot of bell crank lever and axis of governor spindle is 140 mm, determine the initial compression of the spring. If friction is equivalent to a force of 3O N at the .sleevearrow_forwardA child starts sledding from rest, going down a 40 m long 7.5° incline, then coasting across a horizontal stretch. The mass of the sled + child is 35 kg, and the coefficient of kinetic friction is 0.060. a. Make force diagrams for the sled + child on both the hill and the horizontal stretch. b. Resolve the weight of the sled + child along and perpendicular to the plane. c. Determine the reaction force on the sled + child. d. Determine the speed of the sled + child at the bottom of the incline. e. How far along the horizontal stretch does the sled + child travel before stopping? f. What is the total time for the ride? g. Determine how much energy that is transferred to thermal energy. h. Determine how much work is done on the sled + child by the gravitational force while the child + sled is moving along the incline. i. By considering the energy of the system and energy transformations, determine the speed of the sled + child at the bottom of the incline. Does your answer agree with part…arrow_forward2. A car and its load weighs 40 kN and the center of gravity is 600 mm from the ground and midway between the front and rear wheel which are 3 m apart. The car is brought to rest from a speed of 49 kph in 5 seconds by means of the brakes. Compute the normal force on each of the front wheels of the car. (Neglect friction)arrow_forward
- Problem 7.06. Describe, using the concept of static equilibrium, how you could determine an unknown mass for a given object using just string/rope, a meter stick (or yard stick) and standard weights (e.g. a 20 lb weight). Write a mathematical expression for the mass of the object using the standard weight W, gravitational acceleration g, and any measured distances with the meter stick R₁, R2, ..., Rn.arrow_forwardFor a technology project, a student has built a vehicle, of total mass 6.00 kg, that moves itself. As shown, it runs on four light wheels. A reel is attached to one of the axles, and a cord originally wound on the reel goes up over a pulley attached to the vehicle to support an elevated load. After the vehicle is released from rest, the load descends very slowly, unwinding the cord to turn the axle and make the vehicle move forward (to the left as shown). Friction is negligible in the pulley and axle bearings. The wheels do not slip on the floor. The reel has been constructed with a conical shape so that the load descends at a constant low speed while the vehicle moves horizontally across the floor with constant acceleration, reaching a final velocity of 3.00î m/s. (a) Does the floor impart impulse to the vehicle? If so, how much? (b) Does the floor do work on the vehicle? If so, how much? (c) Does it make sense to say that the final momentum of the vehicle came from the floor? If…arrow_forwardThe cabin of a tram is suspended from a set of wheels that can roll freely on the support cable ACB and is being pulled at a constant speed by cable DE. Given a = 42° and ß = 32°, the tension in cable DE is 20 kN, and assuming the tension in cable DF is negligible, what is: a. the combined weight of the cabin, its support system, and its passengers? b. the tension in the support cable ACB? You can assume AC and ED are parallel! a 3arrow_forward
- The uniform rod BC weighs 32.2 lb. The rod is connected to the frame D by a frictionless pin C and a cord AB as shown. Calculate the maximum value of the applied force P for which rod BC will not “rise up”.arrow_forwardBlocks A, B, and C are placed as in Fig. and connected by ropes of negligible mass. Both A and B weigh 25.0 N each, and the coefficient of kinetic friction between each block and the surface is 0.35. Block C descends with constant velocity. (a) Draw separate free-body diagrams showing the forces acting on A and on B. (b) Find the tension in the rope connecting blocks A and B. (c) What is the weight of block C? (d) If the rope connecting A and B were cut, what would be the acceleration of C?arrow_forwardPlease and thankarrow_forward
- 2. Three blocks on a frictionless horizontal surfsce are in contact with eachother as shown below. A force F is applied to block 1 as shown. (a) Draw a free body diagram for each block. (b) Determine the acceleration of the system in terms of m1, m2, m3 and F. (c) Determine the net force on each block. (d) Determine the contact force each block exerts on its neighbors. (e) If |F| = 96N and m1 = m2 = m3 = 12kg, give numerical answers to the questions above. Do your answers make sense intuitively? mi mz M3arrow_forwardMary and her sister are playing with a cardboard box on the neighborhood hill. Mary climbs into the box, the total mass of the box with Mary in it is 115 kg. The box starts at rest at the beginning of the incline. The hill is at an incline of 28 degrees with respect to the horizontal.The static and kinectic friction between the box and hill is 0.4 and 0.2 respectively. Assume the box is sliding downhill. a. What is the magnitude of the acceleration of the box? (same as Problem 3b)b. If the hill is 5m tall, what is the Mary's speed when she reaches the bottom?c. At the bottom of the hill, the ground becomes level, but the coefficients offriction do not change. How far will Mary slide before she comes to a stop?arrow_forwardProblem 1.1 Three objects with masses m1 = 36.5 kg, m2 = 19.2 kg, and m3 = 12.5 kg are hanging from ropes that run over pulleys. What is the acceleration of m1?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY