Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.2, Problem 12.81P
To determine
Acceleration of gravity at the surface of planet Jupiter.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An artificial satellite circles the Earth in a circular orbit at a location where the
acceleration due to gravity is 9.791 m/s². Determine the orbitql period of the
satellite? Your answer should be a unit of time.
Human centrifuges are often used to simulate different acceleration levels for pilots. When aerospace physiologists say that a pilot is pulling 9 g,s , they mean that the resultant normal force on the pilot from the bottom of the seat is nine times their weight. Knowing that the centrifuge starts from rest and has a constant angular acceleration of 1.5 RPM per second until the pilot is pulling 9 g's and then continues with a constant angular velocity, determine (a) how long it will take for the pilot to reach 9 g's (b) the angle 0 of the normal force once the pilot reaches 9 g’s. Assume that the force parallel to the seat is zero.
Two identical giant flywheels are on 2 identical slopes at an angle alpha = 20 deg. One flywheel is rolling on its inside shaft of diameter d1 = 3 ft, and the second flywheel is rolling without slipping on its outside diameter d2 = 5 ft. They are both released from rest. The weight of the flywheel is W = 8 lbs
Knowing that flywheel 1 attains a speed of v = 7.0 ft/s in t = [t] s, (if t doesn't show take any t between 5 and 10 sec) find the radius of gyration of the flywheels, following those steps:
b. Find omega final
c. Find the angular impulse at the point of contact between the shaft and the slope.
d. Write the formula to find the final momentum.
e. Solve for k, using the principle of angular impulse and momentum
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- O 4. Moves downward at constant speed. QUESTION 20 A box of mass 400 kg is supported on a spring scale on the floor of a goods lift. The mass of the lift is 1900 kg. The lift is travelling from the 20th floor to the ground floor. At an instant when the deceleration of the lift is 1.2 ms 2 as it approaches the ground floor, what is the reading recorded by the scale? O 1.351 kg O 2.387 kg O 3.449 kg O 4.461 kg Click Save and Submit to save and submit. Click Save All Answers to save all answers.arrow_forwardPROBLEM 3.12 An object is launched at a speed of 20.0 m/s from the top of a tall tower. The height y of the object with respect to the base of the tower as a function of the timet elapsed from launch is y(t) = -4.90t² + 19.32t + 60, where y is in meters and t is in seconds. Determine: 13. the height H of the tower. 50 m c. 70 m d. 80 m а. b. 60 m 14. the launch angle. с. 75.35° d. 77.35° а. 71.35° b. 73.35° 15. the horizontal distance traveled by the object before it hits the ground. с. 32.28 m d. 34.28 m a. 28.28 m b. 30.28 marrow_forwardConsider a satellite around Earth in an elliptic orbit. At a point in its orbit, the radius (in km) from the center of the Earth is varying with time as r(t) = 7000 - 0.54 t (with t in seconds). The angular rate is 0 (t) = 1.02 x 10³ rad/s. What is the magnitude of acceleration (in m/s²) at t = 0.arrow_forward
- A single wire ACB passes through a ring at C attached to a sphere that revolves at a constant speed v in the horizontal circle shown. Knowing that the tension is the same in both portions of the wire, determine the speed v.arrow_forward1. A uniform rectangular plate has a mass of 5 kg and is held in position by three ropes as shown. Knowing that 0 = 30°, determine, immediately after rope CF has been cut, (a) the acceleration of the plate, (b) the tension in ropes AD and BE. Use Newton's second law. (Answers: a= 4.91 m/s? T3g = 11.43N TẠD = 31.0N) ВЕ 20 m -300mmarrow_forwarda 400-kg satellite was place in a circular orbit 1500 km above the surface of the earth at this elevation the acceleration of gravity is 6.43 m/s^2 determine the kinetic energy of the satellite in kJ knowing that its orbital speed is 25.6x10^3 km/harrow_forward
- M XCM M A binary system is shown by the image above. It consists of two stars of equal mass. These stars revolve in a circular orbit about thgeir center of mass, which is midway between them. If the orbital speed of each star is 2,280 km/s and the orbital period of each is 11.7 days. Find the mass M of each star.arrow_forwardA spacecraft approaching the planet Saturn reaches point A with a velocity vA of magnitude 68.8 × 103 ft/s. It is to be placed in an elliptic orbit about Saturn so that it will be able to periodically examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit of radius 183 × 103 mi about the center of Saturn, traveling at a speed of 37.2 × 103 ft/s. Determine (a) the decrease in speed required by the spacecraft at A to achieve the desired orbit, (b) the speed of the spacecraft when it reaches the orbit of Tethys at B.arrow_forward2) A ball with a weight of 0.3N is attached to the end of an elastic thin cord of which unstretched length is 59cm. The other end of the cord is fixed at a point on the horizontal frictionless surface of a table. The stiffness of the cord is 20 N/m. At an instant, the ball moves with a velocity of 2.95 m/s which is perpendicular to the radius of curvature of the path of the ball and the length of the cord is 89cm at that instant. For the elastic cord to be stretched all the time during the motion of this ball, what is the minimum value of the velocity of the ball?arrow_forward
- A particle of mass 2.4 kg is attached to two cables CB and CA as shown. it revolves in a horizontal circle of radius 1.2 m at a constant speed of 4.32 m/s. B 30 C | 30° A Tension in cable CB is (N) a. 81.446525330144 b. 61.084893997608 c. 50.90407833134 d. 71.265709663876 e. 20.361631332536 Tension in cable CA is (N) a. 37.992834669856 b. 28.494626002392 c. 23.74552166866 d. 33.243730336124 e. 9.498208667464 minimum velocity (m/s) of the particle maximum velocity (m/s) if maximum tension does not exceed 141.12 Narrow_forwardMain blades 7 m Tail propeller For the helicopter shown, the cab weights 1000 kg and is initially at rest. It is known that the main blades rotate clockwise with an angular velocity of 180 rpm. In the helicopter, tail propeller is used to prevent rotation of the cab as the speed of the main blades is changed. a) Assuming that the tail propeller is not operating, determine the final angular velocity of the cab after the speed of the main blades has been changed from 180 rpm to 300 грm, b) Assuming that the tail propeller is operating and that the angular velocity of the cab remains zero, determine the final horizontal velocity of the cab when the speed of the main blades has been changed from 180 rpm to 300 rpm. Also determine the force exerted by the tail propeller if the change in speed takes places uniformly in 10 s. Notes: The speed of the main blades is measured relative to the cab. The weight and the radius of gyration of the cab are 1000 kg, and 1000 mm, respectively. Each of the…arrow_forwardF The retractable shelf shown is supported by two identical linkage-and-spring systems; only one of the systems is shown. A 20-kg machine is placed on the shelf so that half of its weight is supported B 300 mm 30° 30° E by the system shown. If the springs are removed and the system is released from rest, determine (a) the acceleration of the machine, (b) the D 80 mm 100 mm A 80 mm | 30° tension in link AB. Neglect the weight of the shelf 200 mm and links. 50 mm 100 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY