Concept explainers
The parasailing system shown uses a winch to pull the rider in toward the boat, which is traveling with a constant velocity. During the interval when
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
- 1- A particle moves along the x axis. Its position varies with time according to the expression x=-41+ 2f where x is in meters and t is in seconds. The position-time graph for this motion is shown in Figure. Note that the particle moves in the negative x direction for the first second of motion, is momentarily at rest at the moment 1 = 1 s, and moves in the positive x direction at times /> 1 s. (A) Determine the displacement of the particle in the time intervals t=0 to 1=1 s and t= 1 s to / = 3 s. B) Calculate the average velocity during these two-time intervals C) determine the instantaneous velocity and instantaneous speed at t= 0.5 s. x(m) Slope = 4 m/s 10 00 8 9 10 O Slope =-2 m/s 1 2 015 t(s)arrow_forwardThis is a multi-part question. Once an answer is submitted, you will be unable to return to this part. The pitcher in a softball game throws a ball with an initial velocity v0 of 72 km/h at an angle α with the horizontal. Given, the height of the ball at point B is 0.68 m. Determine the angle θ that the velocity of the ball at point B forms with the horizontal. The angle θ that the velocity of the ball at point B forms with the horizontal is °.? Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also on occasions, I receive wrong answers!!. Please go through the question and working out step by step when you finish them. Appreciate your time!.arrow_forwardAircraft A is flying horizontally at an altitude of 10.6 km and is increasing its speed at the rate of 2 m/s each second. Aircraft B, flying in the same vertical plane at an altitude of 16 km, has a constant speed of 1400 km/h. If A has a speed of 1100 km/h at the instant when 0 = 30°, determine the values of 7 and 0 for this same instant. (* = 12.9 m/s², 0 = −0.0037 rad/s²) A 0 Barrow_forward
- Solve it correctlyarrow_forwardSubject Dynamicsarrow_forward2/149 A jet plane flying at a constant speed v at an alti- tude h = 10 km is being tracked by radar located at O directly below the line of flight. If the angle 0 is decreasing at the rate of 0.020 rad/s when e= 60°, determine the value of r at this instant and the magnitude of the velocity v of the plane. Ans. i 4.62 m/s?, v = 960 km/h h Problem 2/149arrow_forward
- A particle moving along the s-axis has a velocity given by v = 22.3 -3.7t² ft/sec, where t is in seconds. When t = 0, the position of the particle is given by so = 3.9 ft. For the first 3.5 seconds of motion, determine the total distance D traveled, the net displacement As, and the value of s at the end of the interval. Answers: Total distance traveled, Net Displacement, The value of s at the end of the interval, D= As = S= i i i ft ft ftarrow_forwardPlease solve for the time (T), and speed (S) of the Problem and show the solution. Thank you very much.arrow_forwardA particle which moves with curvilinear motion has coordinates in millimeters which vary with the time t in seconds according to x = 6.3t2 - 7.0t and y = 4.3t2 - t°/4.0. Determine the magnitudes of the velocity v and acceleration a and the angles which these vectors make with the x-axis when t = 3.0 s. Answers: When t = 3.0 s, mm/s, i %3D V = mm/s?, 0x = iarrow_forward
- This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A motorist starts from rest at Point A on a circular entrance ramp when t = 0, increases the speed of her automobile at a constant rate and enters the highway at Point B. Her speed continues to increase at the same rate until it reaches 85 km/h at Point C. Determine the magnitude of the total acceleration when t = 20 s. The magnitude of the total acceleration is m/s2.? Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also questions here I post, I receive wrong answers from them on a regular basis!!. Please go through the question and working out step by step when you finish them!!. Appreciate your time!.arrow_forwardThe 2-1b spool slides along the smooth horizontal spiral rod, r = (20) ft, where is in radians, as shown in (Figure 1). At the instant = 90°, its angular rate of rotation is constant and equals 0 = 4 rad/s. Figure 8 = 4 rad/s 1 of 1 P Determine the horizontal tangential force P needed to cause the motion. Express your answer in pounds to three significant figures. IVE ΑΣΦ ↓↑ vec P= 6.244 Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining ? lbarrow_forwardA ball is thrown so that the motion is defined by the equations x= 5t and y- 2+ 6 - 4.9r, where x and y are expressed in meters and t is expressed in seconds. Determine (a) the velocity at -I s, (b) the horizontal distance the ball travels before hitting the ground. Match each item to a choice Magnitude of V, Horizontal distance before it hits the ground: Choices E 749 m = 9.47 m # 6.28 m/s # 2.86 m/s 4.97 m # 8.62 m/s ::arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY