Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.23P
To transport a series of bundles of shingles A to a roof, a contractor uses a motor-driven lift consisting of a horizontal platform BC which rides on rails attached to the sides of a ladder. The lift starts from rest and initially moves with a constant acceleration a1 as shown. The lift then decelerates at a constant rate a2 and comes to rest at D, near the top of the ladder. Knowing that the coefficient of static friction between a bundle of shingles and the horizontal platform is 0.30, determine the largest allowable acceleration a1 and the largest allowable deceleration a2 if the bundle is not to slide on the platform.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To transport a series of bundles of shingles A to a roof, a contractor uses a motor-driven lift consisting of a horizontal platform BC
which rides on rails attached to the sides of a ladder. The lift starts from rest and initially moves with a constant acceleration a₁ as
shown. The lift then decelerates at a constant rate a2 and comes to rest at D, near the top of the ladder. Knowing that 0 = 57° and
that the coefficient of static friction between a bundle of shingles and the horizontal platform is 0.30, determine the largest
allowable acceleration a₁ and the largest allowable deceleration a2 if the bundle is not to slide on the platform.
4.4 m
0.8 m
B
Ө
The largest allowable acceleration a₁ is
A
m/s²
and the largest allowable deceleration a2 ism/s².
To transport a series of bundles of shingles A to a roof, a
contractor uses a motor-driven lift consisting of a horizontal
platform BC which rides on rails attached to the sides of a
ladder. The lift starts from rest and initially moves with a
constant acceleration a1 as shown. The lift then decelerates
D
at a constant rate a2 and comes to rest at D, near the top of
the ladder. Knowing that the coefficient of static friction
4.4 m
between a bundle of shingles and the horizontal platform is
0.30, determine the largest allowable acceleration a1 and the
largest allowable deceleration az if the bundle is not to slide
on the platform.
aj
65°
A
В
0.8 m
use momentum and impulse equation.
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2- The two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and assuming that the coefficients of friction between block A and the horizontal surface are µz = 0.25 and u = 0.20, determine (a) the acceleration of each block, (b) the tension in the cable.arrow_forwardsolve question completlyarrow_forwardKnowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown, determine the maximum possible acceleration on a level road, assuming rear- wheel drive 20 in. 60 in. 40 in.arrow_forward
- 5 Knowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown, determine the maximum possible acceleration on a level road, assuming (a) four-wheel drive, (b) rear- wheel drive, (c) front-wheel drive.arrow_forwardThe two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and knowing that the coefficients of friction between the blocks and the inclines are ls = 0.25 and = 0.2, determine (a) the acceleration of each block, (b) the tension in the cable. 200 lb 90° 20° 300 lb Вarrow_forwardThe two blocks shown are originally at rest. Neglecting the masses of the pulleys and the effect of friction in the pulleys and knowing that the coefficients of friction between the blocks and the inclines are us = 0.25 and uk = 0.2, determine (a) the acceleration of each block, (b) the tension in the cable. 200 lb A 90° 20° 300 lb Barrow_forward
- People with mobility impairments can gain great health and social benefits from participating in different recreational activities. You are tasked with designing an adaptive spring-powered shuffleboard attachment that can be utilized by people who use wheelchairs. Knowing that the coefficient of kinetic friction between the 15 ounce puck A and the wooden surface is 0.3, the maximum spring displacement you desire is 6 inches, and that you want the puck to travel at least 30 ft/s, determine (a) the spring constant k, (b) how far the athlete should pull back the spring to make the puck come to rest after 34 ft.arrow_forwardA block A of 60.0 lb is connected to a block B of 10.0 lb by means of a rope and an ideal pulley. The system is released from rest. Between block A and the surface, there is a coefficient of kinetic friction of 0.10. Block A has descended 5.00 ft. At this moment, determine: a. The displacement of block B.b. The magnitude of the tension in the rope.c. The speed of block B.d. The speed of block A.arrow_forwardTo unload a bound stack of plywood from a truck, the driver first tilts the bed of the truck and then accelerates from rest. Knowing that the coefficients of friction between the bottom sheet of plywood and the bed are μs= 0.40 and μk= 0.30, determine (a) the smallest acceleration of the truck which will cause the stack of plywood to slide, (b) the acceleration of the truck which causes corner A of the stack to reach the end of the bed in 0.9 s.arrow_forward
- The block B start from rest and slides on the 30 wedge A , which is supported by a horizontal surface . Neglecting frictionarrow_forwardA truck is traveling down a road with a 4-percent grade at a speed of 60 mi/h when its brakes are applied to slow it down to 20 mi/h. An antiskid braking system limits the braking force to a value at which the wheels of the truck are just about to slide. Knowing that the coefficient of static friction between the road and the wheels is 0.60, determine the shortest time needed for the truck to slow down.arrow_forwardA 40-lb sliding panel is supported by rollers at B and C. A 25-lb counterweight A is attached to a cable as shown and, in cases a and c , is initially in contact with a vertical edge of the panel. Neglecting friction, determine in each case shown the acceleration of the panel and the tension in the cord immediately after the system is released from rest.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY