Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.1, Problem 12.59P
To determine
The range of values of the constant speed for which the platform will remain at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. A vehicle, mass 1400 kg, passes a bend at a speed of 54 km/hr. The radius of curvature of the road is 60 m. Determine the minimum coefficient of static friction between the car tires and the road, so that the car can pass through corners safely.
A car of mass 700 kg travels round a horizontal curve of 60 m radius. The centre of gravity of the car is 1.25 m above the ground and the distance between the wheels is 1.7 m. If the limiting coefficient of friction between the tyres and the road is 0.6 determine, with reason, whether the vehicle will skid or overturn when rounding the bend at speed. Hence state the maximum permissible speed to navigate the curve safely.
3) A truck is moving down a 10° incline. The driver
strongly applies the brakes to avoid a collision and
the truck decelerates at the steady rate of 1 m/s².
If the static coefficient of friction u between the
load W and the truck is 0.3, will the load slide or
remain stationary relative to the truck trailer?
The weight of Wis 4500 N and is not held to the
truck by cables.
n
W
Chapter 12 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Astronauts who landed on the moon during the...Ch. 12.1 - The value of g at any latitude o may be obtained...Ch. 12.1 - A 400-kg satellite has been placed in a circular...Ch. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - In anticipation of a ling 7° upgrade, a bus driver...Ch. 12.1 - A 0.2-Ib model rocket is launched vertically from...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - If an automobile’s braking distance from 90km/h is...Ch. 12.1 - A mother and her child are skiing together, and...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Prob. 12.25PCh. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - A 25-kg block A rests on an inclined surface, and...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - A 450-g tetherball A is moving along a horizontal...Ch. 12.1 - During a hammer throwers practice swings. The...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - A 1-kg sphere is at rest relative to parabolic...Ch. 12.1 - Prob. 12.42PCh. 12.1 - The 1.2-Ib flyballs of a centrifugal governor...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The two blocks are released from rest when r=0.8 m...Ch. 12.1 - Prob. 12.72PCh. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Prob. 12.124RPCh. 12 - Prob. 12.125RPCh. 12 - The roller-coaster track shown is contained in a...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the smallest distance d for which the hook will remain at rest when acted on by the force P. Neglect the weight of the hook, and assume that the vertical wall is frictionless.arrow_forwardThe coefficient of rolling resistance between the 30-kg lawn roller and the ground is r=0.1. (a) Determine the force P required to pull the roller at a constant speed. (b) What force P would be needed to push the roller at a constant speed?arrow_forwardA 3.5-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle is 35°, the angular velocity of the arm about a horizontal axis through O is 53 deg/s clockwise and its angular acceleration is 173 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 420 mm/s. Determine the necessary minimum gripping force P if the coefficient of static friction between the sphere and the gripping surfaces is 0.41. Compare P with the minimum gripping force P, required to hold the sphere in static equilibrium in the 35° position. p 1.8 m Answers: P = P₁ = i i $ N Narrow_forward
- A 10-kg cabinet is mounted on casters that slides with a coefficient of friction of 0.2 (neglect the mass of casters) on the floor. If a 100-N horizontal force is applied at the centroid, determine (a)find the range of values of h if the cabinet will not tip over (b) the acceleration of the cabinet if it will not tip over(c) what is the reaction at the casters?arrow_forwardA 1.6-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle e is 38, the angular velocity of the arm about a horizontal axis through O is 55 deg/s clockwise and its angular acceleration is 205 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 440 mm/s. Determine the necessary minimum gripping force Pif the coefficient of static friction between the sphere and the gripping surfaces is 0.51. Compare Pwith the minimum gripping force P; required to hold the sphere in static equilibrium in the 38° position. 1.5 m Answers: P = i Ps= iarrow_forward2arrow_forward
- 3. The coefficients of friction between the load A and the bed of the utility vehicle are us 0.4 and uk = 0.36. The angle 0 = 20°. Determine the largest forward and rearward acceleration of the vehicle for which the load will not slide on the bed.arrow_forwardA 3.9-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle 0 is 27°, the angular velocity of the arm about a horizontal axis through O is 52 deg/s clockwise and its angular acceleration is 179 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 600 mm/s. Determine the necessary minimum gripping force P if the coefficient of static friction between the sphere and the gripping surfaces is 0.46. Compare P with the minimum gripping force P required to hold the sphere in static equilibrium in the 27° position. 2.0 m Answers: P= Ps= i Z Z N Narrow_forwardBlock A (99-lb) is attached to block B (49-lb) through the interconnected pulleys C and D, as shown in the figure above. The coefficient kinetic friction between block A and the incline is 0.2. If block A has now a speed of 5(ft/s) down the incline, then while neglecting the mass of pulleys and ropes, Determine: 1. The Acceleration of block A 2. The distance (magnitude and direction) block B moves as block A slides to a stop.arrow_forward
- Also draw the FBD of this problemarrow_forwardA 2.6-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle 0 is 39°, the angular velocity of the arm about a horizontal axis through O is 52 deg/s clockwise and its angular acceleration is 220 deg/s2 counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 520 mm/s. Determine the necessary minimum gripping force Pif the coefficient of static friction between the sphere and the gripping surfaces is 0.61. Compare Pwith the minimum gripping force P, required to hold the sphere in static equilibrium in the 39° position. 2.0 m Answers: P = i P3 = Narrow_forward4. The chain is released from rest with the length b of overhanging links just sufficient to initiate motion (I) Neglect any friction and determine the velocity and acceleration of the chain when the last link leaves the edge. (2) For coefficient of friction between the links and the horizontal surface have essentially the same value μ, determine the velocity and acceleration of the chain when the last link leaves the edge. 3 Derive the equation in calculating the time from rest to leaving the table in for both cases (with friction and no friction) L-b. μ barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY