Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 86P
Argon gas enters a constant cross-sectional area duct at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Thermodynamics (Ideal Gas)
air enters an ideal nozzle at a pressure of 45 psig with a temperature of 1,340F. The pressure at the nozzle exit is 14.925 psia. If the mass flow rate of air is 8 lm/min, determine the required exit diameter in cm?
Air enters an ideal nozzle at a pressure of 45 psig with a temperature of 1,340°F The pressure at the nozzle exit is 14.925 psia. If the mass flow rate of air is 8 lb/min, determine the required exit diameter in cm
Question attached
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A vapor enters a group of convergent-divergent nozzles at 3MPa and 300 oC and expands to 0.5 MPa. If the exit velocity and the steamcirculation rate are 800 m/s and 14 kg/s respectively, determine:a- The nozzle efficiency.b- The total cross-sectional area of the nozzles.c-The velocity at the throatarrow_forward68 m3/s of air enters a combustion chamber of a jet engine at a velocity of 418 m/s at -59 °C and 31 kPa. The air leaves the chamber at 944 m/s at 187 °C. Determine the fuel (in kg) consumed during a 30 minute flight. Assume that changes in air mass flow rate through the chamber are not significant and Ah = CPAT. Take the air gas constant to be 0.287 kPa.m3/kg.K, the specific heat of air to be 1 kJ/(kgK) and the heating value of the fuel to be 42,024 kJ/kg. Give your answer to the nearest kg.arrow_forwardA pump increases the water pressure from 70 kPa at the inlet to 700 kPa at the outlet. Water enters this pump at 45 oC through a 1.5 cm diameter opening and exits through a 2.1 cm diameter opening. Determine the velocity of the water at the (a) inlet and (b) outlet when the mass flow rate through the pump is 1.4 kg/s. Submit your solution by multiplying (a)*(b) = Format answer : 46.84 Submitarrow_forward
- 1- Nitrogen is stored in a large chamber under conditions of 450 K and 1.5 x 105 N/m . The gas leaves the chamber through a convergent-only nozzle whose outlet area is 30 cm .The ambient room pressure is 1 × 105 N/m, and there are no losses. (a) What is the velocity of the nitrogen at the nozzle exit? (b) What is the mass flow rate? (c) What is the maximum flow rate that could be obtained by lowering the ambient pressure? ERING RINCarrow_forwardWater with density ρ = 998 kg/m3, is flowing at steady mass flow rate through a uniform-diameter pipe. The entrance pressure of the fluid is 68.9 kPa in the pipe, which connects to a pump, which supplies 155.4 J/kg of fluid flowing in the pipe. The exit pipe from the pump is the same diameter as the inlet pipe. The exit section of the pipe is 3.05 m higher than the entrance, and the exit pressure is 137.8 kPa. The Reynolds number in the pipe is above 4,000 in this system. Calculate the frictional loss in the pipe system.arrow_forwardAir with an initial density of 1.285 kg/m³ is passed through a compressor with an inlet diameter of 50 mm. The air enters the compressor at a speed of 60 m/s and a pressure of 105 kPa. At the outlet, the diameter of the pipe is 10 mm. The pressure is 7 bar, and the density of the air is 6 kg/m?. The rate of heat loss from the compressor is 2 kW. (a) Determine the temperatures at the inlet and outlet. The gas constant for air, R = 287 J/kgK. (b) Determine the mass flow rate for the air and the speed of the air at the outlet. (c) Write down a simplified version of the first law for this system. (d) Determine the required rate of work input to the power the compressor. The specific heat capacity of air, Cp = 1005 J/kgK.arrow_forward
- The fluid condition at the Inlet and exit of a horizontal convergent nozzle is analysed. The nozzle is operating steadily and heat loss is assumed negligible. If the specific enthalpy of fluid and velocity of fluid at the inlet are 3,325 kj/kg and 289 km/hr respectively. At the exit the specific enthalpy of fluid is 2,626 J/kg. Calculate the rate of flow of fluid (mass flow rate) when the inlet area is 0.24 m² and the specific volume at the inlet is 0.31 m³/kg.arrow_forwardAir at 105 kPa and 25°C flows from a 7.5-cm circular duct into a 22.5-cm circular duct. The downstream pressure is 6.5 mm of water higher than the upstream pressure. a. Determine the average air velocity approaching the expansion (in m/s).b. Determine the volumetric flow rate (in m3/s).c. Determine the mass flow rate (in kg/s).arrow_forwardAir flows in a steady manner through a converging tube. At the inlet there are 690kPaa and 1.193m3/kg. If 125m3/min of air enters at the rate of 1.57 m/sec and the exit section has a diameter of 35cm, determine (a) the mass flow rate in kg/sec, (b) the diameter of the entrance section in mm and (c) the exit velocity in m/min.arrow_forward
- Air flows steadily through a diverging diffuser. The inlet area of the diffuser is 0.01 m^2, and the mass flow rate of air into the diffuser is 3.0 kg/s. the pressure and temperature of the air as it enters the diffuser are 300 kPa and 100 C. the air leaves the diffuser with a velocity that is very low compared with the inlet velocity. Determine the temperature of the air leaving the diffuser, assuming the diffuser to be well-insulated.arrow_forwardAir at temperature 26 °C and pressure 101.4 kPa enters the diffuser steadily with a velocity of 190 m/s. The inlet area of the diffuser is 0.6m2. The air leaves the diffuser with nearly zero velocity. Determine the mass flow rate in kg/s of the air. Use R=0.287 kJ/kgK. Please keep one decimal for the final answer.arrow_forwardThe pressure in a pipeline that transports helium gas at a rate of 2 kg/s is maintained at 1 atm by venting helium to the atmosphere through a 5-mm- internal-diameter tube that extends 15 m into the air as shown in figure beside. Assuming both the helium and the atmospheric air to be 25 oC, determine: • A- the mass flowrate of helium lost to the atmosphere through the tube. • B- the mass flowrate that infiltrates into the pipeline • C- the flow velocity at the bottom of the tube where it is attached to the pipeline that will be measured by an anemometer in steady operationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license