Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 65P
Air enters a converging—diverging nozzle with low velocity at 2.0 MPa and
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A converging–diverging nozzle receives air from a tank at 100 psia and 600°R. The pressure is 28.0 psia immediately preceding a plane shock that is located in the di- verging section. The Mach number at the exit is 0.5 and the flow rate is 10 lbm/sec. Determine: (a) The throat area. (b) The area at which the shock is located. (c) The outlet pressure required to operate the nozzle in the manner described above. (d) The outlet area. (e) The design Mach number.
Air enters a converging–diverging nozzle with low velocity at 2.4 MPa and 120°C. If the exit area of the nozzle is 3.5 times the throat area, what must the back pressure be to produce a normal shock at the exit plane of the nozzle?
Air enters a converging-diverging nozzle with low velocity at 2.4 MPa and 120°C. If the exit area of the nozzle is 3.5 times the throat
area, what must the back pressure be to produce a normal shock at the exit plane of the nozzle?
The back pressure to produce a normal shock is
MPa.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4: A convergent-divergent nozzle is operating under off-design conditions resulting in the presence of a shock wave in the diverging portion. A reservoir contacting air at 400 kPa and 800K supplies the nozzle, whose throat area is 0.2 m2. The upstream Mach number of the shock is M1 = 2.44. The area at the exit is 0.7 m2. Find area at the location of shock and exit temperature. Ans: Mt = 1.662; Me = 0.4571 and (c) Pe/pa = 4.3591 throat P. = 400 kPa T, = 800 K 2.arrow_forwardShow that the point of maximum entropy on the Fanno line for the adiabatic steady flow of a fluid in a duct corresponds to the sonic velocity, Ma = 1.arrow_forward4- Air at stagnation pressure of 600 kpa and stagnation temperature of 530 K enters a frictionless convergent- divergent nozzle as shown in figure the throat area is 5cm2 and the exit area is 12.5 cm2, the back pressure is 300kpa, and normal shock occurs within the divergent section. Determine the following: A- The Mach number at the exit B- The change in stagnation pressure C- Mx and My are D- The cross sectional area where the shock occurs is approximatelyarrow_forward
- Air flows through a constant area combustion chamber that has a diameter of 0.15 m and a length 5 m. The inlet stagnation temperature is 335 K, the inlet stagnation pressure is 1.4 MPa, and the inlet Mach number is 0.55. Find the maximum rate at which heat can be added to the flow. Neglect the effects of friction.arrow_forwardi need the answer quicklyarrow_forward1)Air is supplied to a converging nozzle from a large reservoir where the temperature and pressure are 400 Kand 150 kPa, respectively. At a certain cross-section where the area Is 0.01 m2, the pressure and velocity are 100 kPa and 120 ms·', respectively. Assuming adiabatic flow, find the Mach number at this cross-section and determine the mass flow rate. 2) Helium flows adiabatically through a duct. At some section, where the area is 0.02 m2, the velocity is 500 ms·1 and the pressure is 100 kPa. Find the Mach number at the given section, and determine the mass flow rate if the stagnation temperature is 300 Karrow_forward
- A large reservoir maintains air at 6.8×105 P a and 15°C. The air flows isentropically through a convergent and divergent nozzle to another large reservoir where the back pressure can be varied. The area of the throat is 25 cm2 and the area of the nozzle exit is 100 cm2 . Find (a) The maximum mass flow rate through the nozzle. (b) The two values of the Mach number at the nozzle exit corresponding to this mass flow rate. (c) The back pressures required to produce these Mach numbers.arrow_forwardD5. A converging-diverging nozzle operates with air and subsonic flow at the inlet and supersonic flow at the outlet with no shacks inside the nozzle. Determine the mach number and static pressure at the outlet if the area of the outlet is 0.900 m2, the area of the throat is 0.490m2, and the stagnation pressure is 215 kPa.arrow_forward3. A converging-diverging nozzle is designed to operate isentropically with air at an exit Mach number of 1.75. The nozzle exit area is 0.12 m². For a constant chamber pressure and temperature of 5 MPa and 200°C, respectively, calculate the following: (a) Maximum back pressure to choke nozzle (b) Flow rate in kilograms per second for a back pressure of 101 kPa (c) Flow rate for a back pressure of 1 MPa.arrow_forward
- Air enters a converging–diverging nozzle at a pressure of 1200 kPa with negligible velocity. What is the lowest pressure that can be obtained at the throat of the nozzle?arrow_forwardThe normal shock wave moves toward the back tank at an underexpansion flow regime during the operation of the converging-diverging nozzle True Or false??arrow_forwardAir flows through a long, isentropic nozzle. The temperature and pressure at the * reservoir are 1000K and 20 atm, respectively. If the Mach number at the entrance is 0.2, determine the gas velocity at the entrance. 634 m/s 127 m/s 478 m/s 254 m/s For a large centrifugal pump, the required net positive suction head is typically around 5 ft 2 ft 15 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License