Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 141P
To determine
The velocity at the exit.
The temperature at the exit.
The pressure at the exit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need help on 3bii and iv
Consider subsonic Fanno flow of air with an inlet Mach number of 0.70. If the Mach number increases to 0.90 at the duct exit as a result of friction, will the (a) stagnation temperature T0, (b) stagnation pressure P0, and (c) entropy s of the fluid increase, decrease, or remain constant during this process?
n aircraft is flying at an altitude of 12000 metres (T=216.65 K. p = 0.193 bar) at a Mach number of 0.82.
The cross sectional area of the inlet diffuser before the L.P. compressor stage is 0.5 m. Determine
(a) the mass of air entering the compressor per second (b) the speed of the aircraft (c) the stagnation
%3D
pressure and temperature of air at the diffuser entry.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4-Air enters a 12-cm-diameter adiabatic duct at MI-0.4, TI=550 K, and Pl= 200 kPa. The average friction factor for the duct is estimated to be 0.021. If the Mach number at the duct exit is 0.8, determine the duct length, temperature, pressure, and velocity at the duct exit.arrow_forwardAir enters a 12-cm-diameter adiabatic duct at Ma1 = 0.4, T1 = 550 K, and P1 = 200 kPa. The average friction factor for the duct is estimated to be 0.021. If the Mach number at the duct exit is 0.8, determine the duct length, temperature, pressure, and velocity at the duct exit.arrow_forwardAir at 26 psia, 320°F, and Mach number Ma = 0.7 flows through a duct. Calculate the velocity and the stagnation pressure, temperat and density of air. The properties of air are R = 0.06855 Btu/lbm-R = 0.3704 psia-ft3/lbm-R and k=1.4. The velocity of air is ft/s. The stagnation temperature of air is The stagnation pressure of air is The stagnation density of air is R. psia. | lbm/ft³.arrow_forward
- stagi 900 kPa 1- Air enters a compressor for a mass flow rate of 0.04 kg/s. at a stagnation temperature 358 K. Assuming the AIR compression process to be isentropic, determine the power 0.04 kg/s require. 100 kPa stagnationarrow_forwardAir enters a 5.5-cm-diameter adiabatic duct with inlet conditions of Ma1 = 2.2, T1 = 250 K, and P1 = 60 kPa, and exits at a Mach number of Ma2 = 1.8. Taking the average friction factor to be 0.03, determine the velocity, temperature, and pressure at the exit.arrow_forwardI need the answer as soon as possiblearrow_forward
- Air flows with negligible friction through a 6-in-diameter duct at a rate of 9 lbm/s. The temperature and pressure at the inlet are T1 = 800 R and P1 = 30 psia, and the Mach number at the exit is Ma2 = 1. Determine the rate of heat transfer and the pressure drop for this section of the duct.arrow_forwardConsider an aircraft engine operating at subsonic conditions with a nozzle that has an exit area of 142in2 and a nozzle inlet/exit area ratio of 2. Engine gases flowing at 30lbm/s enter the nozzle with a pressure of 0.83 bar and avelocity of 144 m/s. The gases expand through the nozzle, exiting at the ambient pressure of 7.25 psia with a velocity of 1320 ft/s. a) For these conditions, what is the force (in units of lbf) trasmitted to the structure holding the nozzle. Provide both direction and magnitude of the force. b) Based on your results, comment on whether the force acting on the nozzle would hlep speed up or slow down a vehicle that used this nozzle as part of a jet propulsion system. I mostly wanted help in part b. Thank you.arrow_forwardAir is cooled as it flows through a 30-cm-diameter duct. The inlet conditions are Ma1 = 1.2, T01 = 350 K, and P01 = 240 kPa and the exit Mach number is Ma2 = 2.0. Disregarding frictional effects, determine the rate of cooling of air.arrow_forward
- Solve the question 5, please.arrow_forwardI need help on 3aarrow_forwardConsider air entering a heated duct at p1 = 1 atm and T1 = 288 K. Ignore the effect of friction. Calculate the amount of heat per unit mass (in joules per kilogram) necessary to choke the flow at the exit of the duct for an inlet Mach number of M1 = 2.2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License