Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 133EP
Helium expands in a nozzle from 220 psia, 740 R, and negligible velocity to 15 psia. Calculate the throat and exit areas for a mass flow rate of 0.2 Ibm's, assuming the nozzle is isentropic. Why must this nozzle be converging-diverging?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A large vessel contains compressed air at To = 350 K and Po = 2 bar. A converging-diverging nozzle is attached to the vessel to discharge air. The throat area of the nozzle is 200 cm2. At the exit, the pressure is 20 kPa and the flow is supersonic. Answer the followings:
Consider a spherical tank containing compressed air. It is known from the elementary compressible theory that if a hole is opened on the tank, the compressed air will leave the tank at a mass flow rate of m. = k? where k is a constant and ? is the density at any time. Assuming an initial density ?0 and pressure P0, derive an expression for P(t).
Steam enters a nozzle at 377°C, 1.6 MPa, and a steadyspeed of 200 m/s and accelerates isentropically until it exitsat saturation conditions. Estimate the exit velocity andtemperature.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air is flowing in a convergent nozzle. At a particular location within the nozzle the pressure is 280 kPa, the stream temperature is 345 K. and the velocity is 150 m/s. If the cross-sectional area at this location is 9.29 x 103 m², find: (a) The Mach number at this location, (b) The stagnation temperature and pressure. (c) The area, pressure, and temperature at the exit where M-1.0. (d) The mass rate of flow for the nozzle. Indicate any assumptions you may make and the source of data used in the solution.arrow_forwardAir at 800 kPa and 1200 K enters a converging nozzle with negligible velocity (i.e., these are stagnation or total values). The throat area of the nozzle is 10 cm?. Calculate and plot the exit pressure, exit velocity, and mass flow rate versus back pressure (exit pressures) from 100 kPa to 800 kPa by 100 kPa.arrow_forwardFive kilograms of a perfect gas expands polytropically from a pressure of 1 MPa and temperature of 300 °C to a pressure of 0,2 MPa and a temperature 165 °c. If the specific heat capacities are C, = 1,011 and C, = 0,777 kJ/kgK, draw P-V of the process and calculate: 1. (a) Characteristic gas constant Change of entropy Change of internal energy polytropic index of expansion Work done Heat flow during expansion of the gas (f)arrow_forward
- Solve the question, immediately.arrow_forward(b) Air flows through a cylindrical duct at a rate of 2.3 kg/s. Friction between air and the duct and friction within air can be neglected. The diameter of the duct is 10cm and the air temperature and pressure at the inlet are T₁ 450 K and P₁ = 200 kPa. If the Mach number at the exit is Ma2 determine the rate of heat transfer and the pressure difference across the duct. The constant pressure specific heat of air is cp = 1.005 kJ/kg-K. The gas constant of air is R = 0.287 kJ/kg-K and assume k = 1.4. -arrow_forwardAir enters a convergent-divergent nozzle having a throat area of 400 cm? and attains a Mach number of 1.5 at the exit. The supply air is a pressure of 1.05 bar and a temperature of 40°Cand is having negligible velocity. Find the mass flow rate, area and fluid properties (p, T, p and v) at the exit of the nozzle.arrow_forward
- Question B3:A constant force of 71N is applied on a plunger pushing a piston of diameter 3cm through an insulted syringe containing air at 20°C (y = 1.4, R = 287J/kg- K). The exit diameter is of 2mm and the ambient atmospheric pressure is Pb = 101.3kPa. Estimate the temperature of the air leaving the syringe and the time needed to empty the syringe, given that at the beginning of the stroke the air chamber is 6cm long. The piston moves at a constant rate. Frictional losses may be considered negligible. %3D бст Рь — 101.3КPа F = 71N Зст 2mm Figure B3: Schematic representation of plunger-syringe arrangement.arrow_forwardQ4) Considering water at 30°C flowing over a flat plate 1 mx 1 m at 10°C with a free stream velocity of 0.3 m/s, Find the hx in the heating starts if its starts from 0.3 m from the leading edge.arrow_forwardThe stopping pressure of the air flow at the inlet of a pipe with an inner diameter of 20 cm is 1.1 atm, the static pressure It is 1 atm and its temperature is 285°K, and the Mach number at its exit is 0.6. Average friction inside the pipe Since the coefficient is 0.005, the length of the pipe, the stopping pressure at the outlet, the static pressure and the Calculate the temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License