Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 118P
To determine
Stagnation pressure and temperature of the nitrogen at the inlet and exit states.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A nozzle operates with steam entering at 700 kPa and 300 °C. The velocity at the inlet is 30 m/s. As the steam flows through the nozzle, the pressure decreases. Determine the area ratio value (Area / Area inlet), where Area inlet is the cross sectional area of the nozzle at the inlet, at the sections of the nozzle where the pressure values are 650, 550, 450, 350, and 250 kPa. Assume nozzle operates isentropically.
Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle shown in fig at a mass flow rate of 3.00 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 200 kPa.
The thrust developed by the engine of a Boeing 777 is about 380 kN. Assuming choked flow in the nozzles, determine the mass flow rate of air through the nozzle. Take the ambient conditions to be 215 K and 35 kPa.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4)Carbon dioxide flows steadily through a varying cross-sectional-area duct such as a nozzle shown in the figure. The throat area is (10+0.1*A) cm². The carbon dioxide enters the duct at a pressure of (1400+A) kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the flow rate in the nozzle. A = LAST DIGIT OF YOUR CLASS ID Stagnation region 1400 - ALPw 200°C CO₂ 1400 P. KParrow_forwardAir at temperature 27 oC and pressure 66.3 kPa enters the diffuser steadily with a velocity of 190 m/s. The inlet area of the diffuser is 0.6m2. The air leaves the diffuser with nearly zero velocity. Determine the mass flow rate in kg/s of the air. Use R=0.287 kJ/kgK.arrow_forwardfluid exits at 136 kPa, 0.94 m³/kg and 335 m/s. Determine the change in internal energy. A fluid enters with a steady flow of 3.7 kg/s and an initial pressure of 690 kPa, an initial density of 3.2 km/m³, an initial velocity of 60 m/s and an initial internal energy of 2000 kJ/kg. It leaves at 172 kPa, p = 0.64 kg /m³, V = 160 m/s and u = 1950 kJ/kg. The heat loss is found to be 18.6 kJ/kg. Find the power in kW.arrow_forward
- Air (MW=29 g/mol) at 115.00 kPa and 285.00 is compressed steadily to 600.0 kPa. The mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C, and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60,calculate the following. What is the actual work interaction term in kW? What is the actual exit temperature of the air in Celcius?arrow_forwardFor the specific volume of wet steam, SV=(1-Xv)SV (liq) + XvSV (vapor). Entropy is also calculated this way. If a tank initially has 5kg of wet steam with mass of vapor =1 kg at 100 kPa, and it is heated such that saturated vapor remains in the tank. Assuming that the process is in constant volume, what will be the entropy change of the steam (Kj/K)?arrow_forwardN2 enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat in the amount of 120 k/kg as it flows through it. The gas leaves the heat exchanger at 100 kPa with a velocity of 200 m/s. Determine the Mach number of the nitrogen at the inlet and the exit of the heat exchanger.arrow_forward
- Air flows steadily through a varying cross-sectional area duct such as a nozzle at a mass flow rate of 10 lb/s. The air enters the duct at a pressure of 200 lb/in2 and 445°F with a low velocity, and it expands in the nozzle to an exit pressure of 30 lb/in2. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 30 lb/in2.arrow_forwardArgon is accelerated in a nozzle from 32 m/s at 666 K to 441 m/s and 196 kPa. If the heat loss is equal to 5.1 kJ/kg, determine the gas temperature at outlet in K to 1 decimal place. Take the gas constant as 0.2 (kPa m3)/(kg K) and assume constant specific heats cp=0.5 kJ/(kg K) and cv=0.3 kJ/(kg K).arrow_forwardAir at temperature 26 °C and pressure 101.4 kPa enters the diffuser steadily with a velocity of 190 m/s. The inlet area of the diffuser is 0.6m2. The air leaves the diffuser with nearly zero velocity. Determine the mass flow rate in kg/s of the air. Use R=0.287 kJ/kgK. Please keep one decimal for the final answer.arrow_forward
- Steam enters a turbine at 10,000 kPa and 500 °C, and exhausts at 100 °C with an enthalpy of 2000 kJ/kg. The mass flow rate is m=4.5 kg∙s-1. What is the specific volume (m3/kg) of the exiting stream?arrow_forwardA steady flow of gas enters the turbine of a jet engine at 868 °C and 24 m/s, and leaves at 474 °C and 177 m/s. A heat loss of 8 kJ/kg of gas occurs during its passage through the turbine and the mass flow rate is 3 kg/s. Take Cp = 1.080 kJ/kg.K and R = 0.295 kJ/kg.K, determine the power output of the turbine in MWarrow_forwardWater at the initial pressure of 1 atm and temperature of 15C is flowing through a pump. Final pressure of water is 900 kPa at the outlet. Water enters through a 1-cm-diameter opening and exits through a 2.5-cm- diameter opening. Determine the velocity of the water at the inlet and outlet when the mass flow rate through the pump is 0.5 kg/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License