Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 123P
A subsonic airplane is flying at a 5000-m altitude where the atmospheric conditions are 54 kPa and 256 K. A Pitot static probe measures the difference between the static and stagnation pressures to be 16 kPa. Calculate the speed of the airplane and the flight Mach number.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An aircraft is flying at 440 km/hr at 3 km on a standard day. What is the aircraft Mach Number?
An airliner is cruising at a velocity of 225 mps at an altitude of 14km in the standard atmosphere. Determine its Mach Number.
Consider an airplane flying at a velocity of 250 m/s. Calculate its Mach number if it is flying at a standard altitude of (a) sea level, (b) 5 km, (c) 10 km.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A gas is flowing at a supersonic velocity in a gradually increasing cross-sectional area.If the flow is adiabatic, what happen to the Mach number of the gas as it proceeds?arrow_forwardThe speed of a supersonic aircraft flying at an altitude of 1,100 meters corresponds to a Mach number of 2.5. Estimate the time elapsed, in seconds, between the instant the aircraft was directly over head of an observer and the instant the observer feels the disturbance due to the aircraft. Presume that the temperature at the given height is 280°K, with k = 1.4 and R = 2.87 J/kg·K, in determining the questions of the following three cases: A) When the observer is stationaryB) When the observer is moving in the direction of the aircraft at M = 0.5C) When the observer is moving in the opposite direction with M = 0.5.arrow_forwardIn compressible flow, velocity measurements with a Pitot probe can be grossly in error if relations developed for incompressible flow are used. Therefore, it is essential that compressible flow relations be used when evaluating flow velocity from Pitot probe measurements. Consider supersonic flow of air through a channel. A probe inserted into the flow causes a shock wave to occur upstream of the probe, and it measures the stagnation pressure and temperature to be 620 kPa and 340 K, respectively. If the static pressure upstream is 110 kPa, determine the flow velocity.arrow_forward
- How does the Mach number affect the behavior of compressible flow in a supersonic nozzle?arrow_forwardAir flows through a long, isentropic nozzle. The temp. and pressure at the reservoir are 1000 K and 20 atm respectively. If the Mach number at the entrance is 0.2, what is the gas velocity at the entrancearrow_forwardAir moves at 0.85 of the speed of sound when it is 120°C and 1.2 atm. Air has a specific heat of 0.25 cal/g-C and a ratio of 1.4 between its specific heat under constant pressure and constant volume. Compute the velocity of air under this situation and the stagnation temperature.arrow_forward
- Find the expression for the ratio of the stagnation pressure after a shock wave to the static pressure before the shock wave as a function of k and the Mach number upstream of the shock wave Ma1arrow_forwardIn a wind tunnel air enters with a velocity of 200kmph. The static pressure and temperature of the air at the inlet of the tunnel is 110kPa and 27°C respectively. Determine Mach number, stagnation temperature, stagnation pressure and the stagnation density on a test model installed in the wind tunnel. The size of the tunnel is given as 1m x1m square cross-section. Determine the mass flow rate of the air. For air assume R=287J/kgK ; γ=1.4.arrow_forwardRace cars at the Indianapolis Speedway average speeds of185 mi/h. After determining the altitude of Indianapolis,fi nd the Mach number of these cars and estimate whethercompressibility might affect their aerodynamics.arrow_forward
- The Mach number of an aircraft that travels with a speed of 260 m/s in air at 25° C while it undergoes the compressibility effect will be: (Use speed of sound in air at 0° C: 331 m/s) Select one: a. M = 0.69 b. M= 0.70 c. M= 0.75arrow_forwardAir pass through a wind tunnel at 70 kPa and 15 °C and the speed of air is 200 m/s. Mach number is 1.728 2.576 1.701 0.5879arrow_forwardAn aircraft is flying at an altitude of 100ooft and at a certain part of its airframe a dynamic pressure is measured to be about 150 psf. Calculate for the corresponding Mach number of the aircraft. * 0.4658 0.5958 0.5195 0.5787 O 0.4785arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license